\qquad

Math 1553 Quiz 4: 1.7, 1.8, 1.9 (10 points, 10 minutes)

Solutions

1. (3 points) In each case, determine whether the set of vectors is linearly dependent or linearly independent. You do not need to justify your answer.
$\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}2 \\ -5 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 7\end{array}\right)\right\} \quad$ linearly dependent \quad linearly independent
$\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)\right\} \quad$ linearly dependent linearly independent
$\left\{\binom{1}{0},\binom{0}{1},\binom{-2}{3}\right\} \quad$ linearly dependent \quad linearly independent
(a) Forming a matrix A with the vectors as columns gives 3 pivot columns (no rowreduction required). Alternatively, use the Increasing Span Criterion.
(b) The first and third vectors are multiples of each other.
(c) Three vectors in \mathbf{R}^{2}, so automatically linearly dependent.
2. Suppose A is a 4×3 matrix, with corresponding linear transformation $T(x)=A x$.
a) Fill in the blank: The domain of T is \qquad \mathbf{R}^{3}
b) True or false (no justification required): It is possible that T is onto.

TRUE FALSE.
It is impossible for any linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ to be onto. It would require A to have a pivot in every row, which is impossible since a 4×3 matrix has at most 3 pivots.
3. (5 pts) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation which reflects about the line $y=x$, then rotates counterclockwise by 45°. Find the matrix A so that $T(x)=A x$ for all x in \mathbf{R}^{2}. Show your work! Write out the numerical values of any trig functions.

Solution.

It's not necessary to use it in this problem, but the matrix for cc rotation 45° is

$$
\left(\begin{array}{cc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

We examine what happens to e_{1} and e_{2}.
e_{1} : The reflection sends $\binom{1}{0}$ to $\binom{0}{1}$, then rotating cc by 45° gives $T\left(e_{1}\right)=\binom{\frac{-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$.
e_{2} : The reflection sends $\binom{0}{1}$ to $\binom{1}{0}$, then rotating cc by 45° gives $T\left(e_{2}\right)=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$.
Therefore,

$$
A=\left(\begin{array}{ll}
T\left(e_{1}\right) & T\left(e_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Alternatively, we could write the reflection matrix $J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and the rotation matrix $K=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$, then take the product $K J$:

$$
K J=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

