\qquad

Math 1553 Quiz 6: chapter 3 (10 points, 10 minutes)

Solutions

1. Suppose A is a 3×3 matrix with $\operatorname{det}(A)=-1$, and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the transformation $T(x)=A x$. Which of the following statements must be true?
Circle all that apply. You do not need to justify your answers.
(a) A is the negative of the identity matrix
(b) $\operatorname{det}(-A)=1$.
(c) For every 3×3 matrix B, we have $\operatorname{det}(A B)=-\operatorname{det}(B)$.
(d) If S is a subset of \mathbf{R}^{3} with volume 10 , then the volume of $T(S)$ is 10 .

Solution.

(b), (c), and (d). Note $\operatorname{det}\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=-1$, so A is not necessarily $-I_{3}$.

If $\operatorname{det}(A)=-1$ then $\operatorname{det}(-A)=(-1)^{3} \operatorname{det}(A)=(-1)(-1)=1$, so (b) is true.
If B is any 3×3 matrix, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=-\operatorname{det}(B)$, so (c) is true. If $\operatorname{Vol}(S)=10$ then $\operatorname{Vol}(T(S))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(S)=1 \cdot 10=10$, so (d) is true.
2. (3 points each)
a) Find $\operatorname{det}\left(\begin{array}{cccc}0 & 0 & 3 & -1 \\ 4 & 2 & -1 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 0 & 1 & 4\end{array}\right)$.
b) Suppose det $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=2$. Find $\operatorname{det}\left(\begin{array}{ccc}d & e & f \\ 3 a+d & 3 b+e & 3 c+f \\ g-4 a & h-4 b & i-4 c\end{array}\right)$.

Solution.

a) $\operatorname{det}\left(\begin{array}{cccc}0 & 0 & 3 & -1 \\ 4 & 2 & -1 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 0 & 1 & 4\end{array}\right)=2(-1)^{4} \operatorname{det}\left(\begin{array}{ccc}0 & 3 & -1 \\ 3 & 1 & 2 \\ 0 & 1 & 4\end{array}\right)=2 \cdot 3(-1)^{3} \operatorname{det}\left(\begin{array}{cc}3 & -1 \\ 1 & 4\end{array}\right)=$ $-6(12+1)=-78$. We used the cofactor expansion along column 2 , then along column 1.
b) We multiply row 1 by 3 and swap the first two rows, multiplying the determinant by -3 . The row-replacements do nothing to change the determinant, so the determinant of the final matrix is $2(-3)=-6$.

