IMPORTANT DEFINITIONS AND THEOREMS

REFERENCE SHEET

This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red.

Study Tip

For each definition, find an example of something that satisfies the requirements of the definition, and an example of something that does not. For each theorem, find an example of something that satisfies the hypotheses of the theorem, and an example of something that does not satisfy the conclusions (or the hypotheses, of course) of the theorem. This is great conceptual practice.

CHAPTER 1

Definition. $\mathbf{R}^{n}=$ all ordered n-tuples of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

SECTION 1.1.

Definition. A solution to a system of linear equations is a list of numbers making all of the equations true.

Definition. The elementary row operations are the following matrix operations:

- Multiply all entries in a row by a nonzero number (scale).
- Add (a multiple of) each entry of one row to the corresponding entry in another (row replacement).
- Swap two rows.

Definition. Two matrices are called row equivalent if one can be obtained from the other by doing some number of elementary row operations.

Definition. A system of equations is called inconsistent if it has no solution. It is consistent otherwise.

SECTION 1.2.

Definition. A matrix is in row echelon form if
(1) All zero rows are at the bottom.
(2) Each leading nonzero entry of a row is to the right of the leading entry of the row above.
(3) Below a leading entry of a row, all entries are zero.

Definition. A pivot is the first nonzero entry of a row of a matrix in row echelon form.

Definition. A matrix is in reduced row echelon form if it is in row echelon form, and in addition,
(4) The pivot in each nonzero row is equal to 1.
(5) Each pivot is the only nonzero entry in its column.

Theorem. Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

Definition. Consider a consistent linear system of equations in the variables x_{1}, \ldots, x_{n}. Let A be the reduced row echelon form of the matrix for this system. We say that x_{i} is a free variable if its corresponding column in A is not a pivot column.
Definition. The parametric form for the general solution to a system of equations is a system of equations for the non-free variables in terms of the free variables. For instance, if x_{2} and x_{4} are free,

$$
x_{1}=2-3 x_{4} \quad x_{3}=-1-4 x_{4}
$$

is a parametric form.
Theorem. Every solution to a consistent linear system is obtained by substituting (unique) values for the free variables in the parametric form.
Fact. There are three possibilities for the solution set of a linear system with augmented matrix A:
(1) The system is inconsistent: it has zero solutions, and the last column of A is a pivot column.
(2) The system has a unique solution: every column of A except the last is a pivot column.
(3) The system has infinitely many solutions: the last column isn't a pivot column, and some other column isn't either. These last columns correspond to free variables.

Section 1.3.

Definition. A point is an element of \mathbf{R}^{n}, drawn as a point (a dot).
A vector is an element of \mathbf{R}^{n}, drawn as an arrow.
Definition. A scalar is another name for a real number (to distinguish it from a vector).
Review. Parallelogram law for vector addition.
Definition. A linear combination of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is a vector of the form

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are scalars, called the weights or coefficients of the linear combination.
Definition. A vector equation is an equation involving vectors. (It is equivalent to a list of equations involving only scalars. It is also equivalent to an augmented matrix.)

Definition. The span of a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is the set of all linear combinations of these vectors:

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}=\left\{x_{1} v_{1}+\cdots+x_{p} v_{p} \mid x_{1}, \ldots, x_{p} \text { in } \mathbf{R}\right\} .
$$

Theorem. The following are equivalent:
(1) A vector b is in the span of $v_{1}, v_{2}, \ldots, v_{p}$.
(2) The vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=b
$$

has a solution.
(3) The linear system with augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{p} & b \\
\mid & \mid & & \mid & \mid
\end{array}\right)
$$

is consistent.

Section 1.4.

Definition. The product of an $m \times n$ matrix A with a vector x in \mathbf{R}^{n} is the linear combination

$$
A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right):=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

The output is a vector in \mathbf{R}^{m}.
Definition. A matrix equation is a vector equation involving a product of a matrix with a vector.

Theorem. $A x=b$ has a solution if and only if b is in the span of the columns of A.
Theorem. Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent
(1) $A x=b$ has a solution for all b in \mathbf{R}^{m}.
(2) The span of the columns of A is all of \mathbf{R}^{m}.
(3) A has a pivot in each row.

SEction 1.5.

Definition. A system of linear equations of the form $A x=0$ is called homogeneous.
Definition. A system of linear equations of the form $A x=b$ for $b \neq 0$ is called inhomogeneous or non-homogeneous.
Definition. The trivial solution to a homogeneous equation is the solution $x=0$: $A 0=$ 0.

Theorem. Let A be a matrix. The following are equivalent:
(1) $A x=0$ has a nontrivial solution.
(2) There is a free variable.
(3) A has a column with no pivot.

Theorem. The solution set of a homogeneous equation $A x=0$ is a span.

Definition. The parametric vector form for the general solution to a system of equations $A x=b$ is a vector equation expressing all variables in terms of the free variables. For instance, if x_{2} and x_{4} are free,

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
-1 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-3 \\
0 \\
-4 \\
1
\end{array}\right)
$$

is a parametric vector form. The constant vector $(2,0,-1,0)$ is a specific solution or particular solution to $A x=b$.

Theorem. The solution set of a linear system $A x=b$ is a translate of the solution set of $A x=0$ by a specific solution.

Section 1.7.

Definition. A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly independent if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

has only the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$.
Definition. A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

has a nontrivial solution (not all x_{i} are zero). Such a solution is a linear dependence relation.

Theorem. A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent if and only if one of the vectors is in the span of the other ones.
Fact. Say $v_{1}, v_{2}, \ldots, v_{n}$ are in \mathbf{R}^{m}. If $n>m$ then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent.
Fact. If one of $v_{1}, v_{2}, \ldots, v_{n}$ is zero, then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent.
Theorem. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in \mathbf{R}^{m}, and let A be the $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. The following are equivalent:
(1) The set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent.
(2) No one vector is in the span of the others.
(3) For every j between 1 and n, v_{j} is not in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$.
(4) $A x=0$ only has the trivial solution.
(5) A has a pivot in every column.

Theorem. Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent. Then every vector w in Span $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ can be written in exactly one way as a linear combination

$$
w=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{p} v_{p}
$$

SECTION 1.8.

Definition. A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

- \mathbf{R}^{n} is called the domain of T.
- \mathbf{R}^{m} is called the codomain of T.
- For x in \mathbf{R}^{n}, the vector $T(x)$ in \mathbf{R}^{m} is the image of x under T.

Notation: $x \mapsto T(x)$.

- The set of all images $\left\{T(x) \mid x\right.$ in $\left.\mathbf{R}^{n}\right\}$ is the range of T.

Notation. $T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m}$ means $\quad T$ is a transformation from \mathbf{R}^{n} to \mathbf{R}^{m}.
Definition. Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T(x)=A x .
$$

- The domain is \mathbf{R}^{n}, where n is the number of columns of A.
- The codomain is \mathbf{R}^{m}, where m is the number of rows of A.
- The range is the span of the columns of A.

Review. Geometric transformations: projection, reflection, rotation, dilation, shear.
Definition. A linear transformation is a transformation T satisfying

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c v)=c T(v)
$$

for all vectors u, v and all scalars c.

Section 1.9.

Definition. The unit coordinate vectors in \mathbf{R}^{n} are

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Fact. If A is a matrix, then $A e_{i}$ is the ith column of A.
Definition. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. The standard matrix for T is

$$
\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

Theorem. If T is a linear transformation, then it is the matrix transformation associated to its standard matrix.

Definition. A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto (or surjective) if the range of T is equal to \mathbf{R}^{m} (its codomain). In other words, each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n}.

Theorem. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- $T(x)=b$ has a solution for every b in \mathbf{R}^{m}
- $A x=b$ is consistent for every b in \mathbf{R}^{m}
- The columns of A span \mathbf{R}^{m}
- A has a pivot in every row.

Definition. A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}. In other words, each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n}.
Theorem. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- $T(x)=b$ has one or zero solutions for every b in \mathbf{R}^{m}
- $A x=b$ has a unique solution or is inconsistent for every b in \mathbf{R}^{m}
- $A x=0$ has a unique solution
- The columns of A are linearly independent
- A has a pivot in every column.

CHAPTER 2

Section 2.1.

Definition. The $i j$ th entry of a matrix A is the entry in the i th row and j th column. Notation: $a_{i j}$.
Definition. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are the diagonal entries; they form the main diagonal of the matrix.
Definition. A diagonal matrix is a square matrix whose only nonzero entries are on the main diagonal.

Definition. The $n \times n$ identity matrix I_{n} is the diagonal matrix with all diagonal entries equal to 1 . It has the property that $I_{n} A=A$ for any $n \times m$ matrix A.
Definition. The zero matrix (of size $m \times n$) is the $m \times n$ matrix 0 with all zero entries.
Definition. The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose rows are the columns of A. In other words, the $i j$ entry of A^{T} is $a_{j i}$.
Definition. The product of an $m \times n$ matrix A with an $n \times p$ matrix B is the $m \times p$ matrix

$$
A B=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A v_{1} & A v_{2} & \cdots & A v_{p} \\
\mid & \mid & & \mid
\end{array}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{p}$ are the columns of B.

Fact. Suppose A has is an $m \times n$ matrix, and that the other matrices below have the right size to make multiplication work. Then:

$$
\begin{array}{rlrl}
A(B C) & =(A B) C & A(B+C) & =A B+A C \\
(B+C) A & =B A+C A & c(A B) & =(c A) B \\
c(A B) & =A(c B) & I_{n} A & =A \\
A I_{m} & =A & &
\end{array}
$$

Fact. If A, B, and C are matrices, then:
(1) $A B$ is usually not equal to $B A$.
(2) $A B=A C$ does not imply $B=C$.
(3) $A B=0$ does not imply $A=0$ or $B=0$.

Definition. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be transformations. The composition is the transformation

$$
T \circ U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T \circ U(x)=T(U(x))
$$

Theorem. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ be linear transformations with matrices A and B, respectively. Then the matrix for $T \circ U$ is $A B$.

SECTION 2.2.

Definition. A square matrix A is invertible (or nonsingular) if there is a matrix B of the same size, such that

$$
A B=I_{n} \quad \text { and } \quad B A=I_{n} .
$$

In this case we call B the inverse of A, and we write $A^{-1}=B$.
Theorem. If A is invertible, then $A x=b$ has exactly one solution for every b, namely:

$$
x=A^{-1} b
$$

Fact. Suppose that A and B are invertible $n \times n$ matrices.
(1) A^{-1} is invertible and its inverse is $\left(A^{-1}\right)^{-1}=A$.
(2) $A B$ is invertible and its inverse is $(A B)^{-1}=B^{-1} A^{-1}$.
(3) A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Theorem. Let A be an $n \times n$ matrix. Here's how to compute A^{-1}.
(1) Row reduce the augmented matrix $\left(A \mid I_{n}\right)$.
(2) If the result has the form $\left(I_{n} \mid B\right)$, then A is invertible and $B=A^{-1}$.
(3) Otherwise, A is not invertible.

Theorem. An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_{n}. In this case, the sequence of row operations taking A to I_{n} also takes I_{n} to A^{-1}.
Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Fact. If A is a 2×2 matrix, then A is invertible if and only if $\operatorname{det}(A) \neq 0$. In this case,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Definition. A elementary matrix is a square matrix E which differs from the identity matrix by exactly one row operation.

Fact. If E is the elementary matrix for a row operation, and A is a matrix, then EA differs from A by the same row operation.

Section 2.3.

Definition. A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is invertible if there exists another transformation $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that

$$
T \circ U(x)=x \quad \text { and } \quad U \circ T(x)=x
$$

for all x in \mathbf{R}^{n}. In this case we say U is the inverse of T, and we write $U=T^{-1}$.
Fact. A transformation T is invertible if and only if it is both one-to-one and onto.
Theorem. If T is an invertible linear transformation with matrix A, then T^{-1} is an invertible linear transformation with matrix A^{-1}.

I'll keep all of the conditions of the IMT right here, even though we don't encounter some until later:

The Invertible Matrix Theorem. Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.
(1) A is invertible.
(2) T is invertible.
(3) A is row equivalent to I_{n}.
(4) A has n pivots.
(5) $A x=0$ has only the trivial solution.
(6) The columns of A are linearly independent.
(7) T is one-to-one.
(8) $A x=b$ is consistent for all b in \mathbf{R}^{n}.
(9) The columns of A span \mathbf{R}^{n}.
(10) T is onto.
(11) A has a left inverse (there exists B such that $B A=I_{n}$).
(12) A has a right inverse (there exists B such that $A B=I_{n}$).
(13) A^{T} is invertible.
(14) The columns of A form a basis for \mathbf{R}^{n}.
(15) $\operatorname{Col} A=\mathbf{R}^{n}$.
(16) $\operatorname{dim} \operatorname{Col} A=n$.
(17) $\operatorname{rank} A=n$.
(18) $\operatorname{Nul} A=\{0\}$.
(19) $\operatorname{dim} \operatorname{Nul} A=0$.
(20) $\operatorname{det}(A) \neq 0$.
(21) The number 0 is not an eigenvalue of A.

SECTION 2.8.

Definition. A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:
(1) The zero vector is in V.
(2) If u and v are in V, then $u+v$ is also in V.
(3) If u is in V and c is in \mathbf{R}, then $c u$ is in V.

Definition. If $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we say that V is the subspace generated by or spanned by the vectors $v_{1}, v_{2}, \ldots, v_{n}$.
Theorem. A subspace is a span, and a span is a subspace.
Definition. The column space of a matrix A is the subspace spanned by the columns of A. It is written $\operatorname{Col} A$.

Definition. The null space of A is the set of all solutions of the homogeneous equation $A x=0$:

$$
\operatorname{Nul} A=\{x \mid A x=0\}
$$

Example. The following are the most important examples of subspaces in this class (some won't appear until later):

- Any $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
- The column space of a matrix: $\operatorname{Col} A=\operatorname{Span}\{$ columns of $A\}$.
- The range of a linear transformation (same as above).
- The null space of a matrix: $\operatorname{Nul} A=\{x \mid A x=0\}$.
- The row space of a matrix: $\operatorname{Row} A=\operatorname{Span}\{$ rows of $A\}$.
- The λ-eigenspace of a matrix, where λ is an eigenvalue.
- The orthogonal complement W^{\perp} of a subspace W.
- The zero subspace $\{0\}$.
- All of \mathbf{R}^{n}.

Definition. Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V such that:
(1) $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
(2) $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.
Theorem. Every basis for a gives subspace has the same number of vectors in it.
Fact. The vectors in the parametric vector form of the general solution to $A x=0$ always form a basis for NulA.

Fact. The pivot columns of A always form a basis for $\operatorname{Col} A$.

SECTION 2.9.

Definition. Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis of a subspace V. Any vector x in V can be written uniquely as a linear combination $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$. The coefficients $c_{1}, c_{2}, \ldots, c_{m}$ are the coordinates of x with respect to \mathcal{B}, and the vector with entries $c_{1}, c_{2}, \ldots, c_{m}$ is the \mathcal{B}-coordinate vector of x, denoted $[x]_{\mathcal{B}}$. In summary,

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { means } \quad x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

Definition. The rank of a matrix A, written $\operatorname{rank} A$, is the dimension of the column space $\mathrm{Col} A$.

Rank Theorem. If A is an $m \times n$ matrix, then

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=\text { the number of columns of } A .
$$

Basis Theorem. Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

CHAPTER 3

Definition. The determinant is a function

$$
\text { det }:\{\text { square matrices }\} \longrightarrow \mathbf{R}
$$

with the following defining properties:
(1) If we do a row replacement on a matrix, the determinant does not change.
(2) If we scale a row of a matrix by k, the determinant scales by k.
(3) If we swap two rows of a matrix, the determinant scales by -1 .
(4) $\operatorname{det}\left(I_{n}\right)=1$

Magical Properties of the Determinant.
(1) There is one and only one function det: \{square matrices $\} \rightarrow \mathbf{R}$ satisfying the defining properties (1)-(4).
(2) A is invertible if and only if $\operatorname{det}(A) \neq 0$.
(3) If we row reduce A to row echelon form B using r swaps, then

$$
\operatorname{det}(A)=(-1)^{r} \frac{\text { (product of the diagonal entries of } B)}{(\text { product of the scaling factors) }} .
$$

(4) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$
(5) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(6) $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
(7) If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)

Definition. The $i j$ minor of an $n \times n$ matrix A is the $(n-1) \times(n-1)$ matrix $A_{i j}$ you get by deleting the i th row and the j th column from A.
Definition. The $i j$ cofactor of A is $C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$.
Theorem. The determinant of an $n \times n$ matrix A can be calculated using cofactor expansion along any row or column:

$$
\begin{aligned}
& \operatorname{det} A=\sum_{j=1}^{n} a_{i j} C_{i j} \text { for any fixed } i \\
& \operatorname{det} A=\sum_{i=1}^{n} a_{i j} C_{i j} \text { for any fixed } j
\end{aligned}
$$

Theorem. There are special formulas for determinants of 2×2 and 3×3 matrices:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =a d-b c \\
\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) & =\begin{array}{r}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
\end{array} \quad-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{aligned}
$$

Theorem. The determinant of an upper-triangular or lower-triangular matrix is the product of the diagonal entries.

Theorem. If A is an invertible $n \times n$ matrix, then

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{ccccc}
C_{11} & C_{21} & C_{31} & \cdots & C_{n 1} \\
C_{12} & C_{22} & C_{32} & \cdots & C_{n 2} \\
C_{13} & C_{23} & C_{33} & \cdots & C_{n 3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & C_{3 n} & \cdots & C_{n n}
\end{array}\right)
$$

CHAPTER 5

SECTION 5.1.

Definition. Let A be an $n \times n$ matrix.
(1) An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in R. In other words, $A v$ is a multiple of v.
(2) An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A \nu=\lambda \nu$ has a nontrivial solution.
If $A v=\lambda v$ for $v \neq 0$, we say λ is the eigenvalue for v, and v is an eigenvector for λ.
Fact. The eigenvalues of a triangular matrix are the diagonal entries.
Fact. A matrix is invertible if and only if zero is not an eigenvalue.
Fact. Eigenvectors with distinct eigenvalues are linearly independent.

Definition. Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\begin{aligned}
\lambda \text {-eigenspace } & =\left\{v \text { in } \mathbf{R}^{n} \mid A v=\lambda v\right\} \\
& =\left\{v \text { in } \mathbf{R}^{n} \mid(A-\lambda I) v=0\right\} \\
& =\operatorname{Nul}(A-\lambda I) .
\end{aligned}
$$

SECTION 5.2.

Definition. Let A be an $n \times n$ matrix. The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}(A-\lambda I) .
$$

The characteristic equation of A is the equation

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=0
$$

Fact. If A is an $n \times n$ matrix, then the characteristic polynomial of A has degree n.
Fact. The roots of the characteristic polynomial (i.e., the solutions of the characteristic equation) are the eigenvalues of A.

Definition. The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Definition. Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix C such that $A=C B C^{-1}$.

Fact. Similar matrices have the same characteristic polynomial, hence the same eigenvalues (but different eigenvectors in general).

SECTION 5.3.

Definition. An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

Fact. If $A=P D P^{-1}$ for $D=\left(\begin{array}{cccc}d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n n}\end{array}\right)$, then

$$
A^{m}=P D^{m} P^{-1}=P\left(\begin{array}{cccc}
d_{11}^{m} & 0 & \cdots & 0 \\
0 & d_{22}^{m} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}^{m}
\end{array}\right) P^{-1} .
$$

The Diagonalization Theorem. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Corollary. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Procedure. How to diagonalize a matrix A:
(1) Find the eigenvalues of A using the characteristic polynomial.
(2) For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ-eigenspace.
(3) If there are fewer than n total vectors in the union of all of the eigenspaces \mathcal{B}_{λ}, then the matrix is not diagonalizable.
(4) Otherwise, the n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in your eigenspace bases are linearly independent, and $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where λ_{i} is the eigenvalue for v_{i}.
Definition. Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem. Let λ be an eigenvalue of a square matrix A. Then

$$
1 \leq(\text { the geometric multiplicity of } \lambda) \leq(\text { the algebraic multiplicity of } \lambda) .
$$

Corollary. Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1 , then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form). Let A be an $n \times n$ matrix. The following are equivalent:
(1) A is diagonalizable.
(2) The sum of the geometric multiplicities of the eigenvalues of A equals n.
(3) The sum of the algebraic multiplicities of the eigenvalues of A equals n, and the geometric multiplicity equals the algebraic multiplicity of each eigenvalue.

SECTION 5.5.

Review. Arithmetic in the complex numbers.
The Fundamental Theorem of Algebra. Every polynomial of degree n has exactly n complex roots, counted with multiplicity.

Fact. Complex roots of real polynomials come in conjugate pairs.
Fact. If λ is an eigenvalue of a real matrix with eigenvector v, then $\bar{\lambda}$ is also an eigenvalue, with eigenvector \bar{v}.

Theorem. Let A be a 2×2 matrix with complex (non-real) eigenvalue λ, and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} \nu \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right) .
$$

The matrix C is a composition of rotation by $-\arg (\lambda)$ and scaling by $|\lambda|$.
Theorem. Let A be a real $n \times n$ matrix. Suppose that for each (real or complex) eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity. Then $A=P C P^{-1}$, where P and C are as follows:
(1) C is block diagonal, where the blocks are 1×1 blocks containing the real eigenvalues (with their multiplicities), or 2×2 blocks containing the matrices $\left(\begin{array}{cc}\operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda\end{array}\right)$ for each complex eigenvalue λ (with multiplicity).
(2) The columns of P form bases for the eigenspaces for the real eigenvectors, or come in pairs $(\operatorname{Re} v \operatorname{Im} v)$ for the complex eigenvectors.

Chapter 6

Section 6.1.

Definition.

The dot product of two vectors x, y in \mathbf{R}^{n} is

$$
x \cdot y=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \stackrel{\text { def }}{=} x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Thinking of x, y as column vectors, this is the same as the number $x^{T} y$.
Definition. The length or norm of a vector x in \mathbf{R}^{n} is

$$
\|x\|=\sqrt{x \cdot x}
$$

Fact. If x is a vector and c is a scalar, then $\|c x\|=|c| \cdot\|x\|$.

Definition. The distance between two points x, y in \mathbf{R}^{n} is

$$
\operatorname{dist}(x, y)=\|y-x\|
$$

Definition. A unit vector is a vector v with length $\|v\|=1$.
Definition. Let x be a nonzero vector in \mathbf{R}^{n}. The unit vector in the direction of x is the vector $x /\|x\|$.

Definition. Two vectors x, y are orthogonal or perpendicular if $x \cdot y=0$. Notation: $x \perp y$.

Fact. $x \perp y \Longleftrightarrow\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$
Definition. Let W be a subspace of \mathbf{R}^{n}. Its orthogonal complement is

$$
W^{\perp}=\left\{v \text { in } \mathbf{R}^{n} \mid v \cdot w=0 \text { for all } w \text { in } W\right\} .
$$

Fact. Let W be a subspace of \mathbf{R}^{n}.
(1) W^{\perp} is also a subspace of \mathbf{R}^{n}
(2) $\left(W^{\perp}\right)^{\perp}=W$
(3) $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$
(4) If $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then

$$
\begin{aligned}
W^{\perp} & =\text { all vectors orthogonal to each } v_{1}, v_{2}, \ldots, v_{m} \\
& =\left\{x \text { in } \mathbf{R}^{n} \mid x \cdot v_{i}=0 \text { for all } i=1,2, \ldots, m\right\} \\
& =\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right) .
\end{aligned}
$$

Definition. The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted Row A. Equivalently, it is the column span of A^{T} :

$$
\operatorname{Row} A=\operatorname{Col} A^{T} .
$$

It is a subspace of \mathbf{R}^{n}.
Fact. $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul}\left(\begin{array}{c}-v_{1}^{T}- \\ -v_{2}^{T}- \\ \vdots \\ -v_{m}^{T}-\end{array}\right)$.
Fact. Let A be a matrix.
(1) $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A$.
(2) $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$ and $\left(\operatorname{Nul} A^{T}\right)^{\perp}=\operatorname{Col} A$.

Sections 6.2 And 6.3.

Theorem. Let W be a subspace of \mathbf{R}^{n}. Every vector x can be decompsed uniquely as

$$
x=x_{W}+x_{W^{\perp}}
$$

where x_{W} is the closest vector to x in W, and $x_{W^{\perp}}$ is in W^{\perp}.
The equation $x=x_{W}+x_{W^{\perp}}$ is called the orthogonal decomposition of x with respect to W.

Definition. A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if, in addition, each vector is a unit vector.

Lemma. A set of orthogonal vectors is linearly independent. Hence it is a basis for its span.
Definition. Let W be a subspace of \mathbf{R}^{n}, and let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$
\operatorname{proj}_{W}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}
$$

For instance, if $L=\operatorname{Span}\{u\}$ is a line, then

$$
\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u
$$

Theorem. Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then

$$
x_{W}=\operatorname{proj}_{W}(x) \quad \text { and } \quad x_{W^{\perp}}=x-\operatorname{proj}_{W}(x)
$$

In particular, $\operatorname{proj}_{W}(x)$ is the closest point in W to x :
Best Approximation Theorem. Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $y=\operatorname{proj}_{W}(x)$ is the closest point in W to x, in the sense that

$$
\operatorname{dist}\left(x, y^{\prime}\right) \geq \operatorname{dist}(x, y) \quad \text { for all } \quad y^{\prime} \text { in } W .
$$

Definition. We can think of orthogonal projection as a transformation:

$$
\operatorname{proj}_{W}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \quad x \mapsto \operatorname{proj}_{w}(x)
$$

Theorem. Let W be a subspace of \mathbf{R}^{n}.
(1) proj_{W} is a linear transformation.
(2) For every x in W, we have $\operatorname{proj}_{W}(x)=x$.
(3) For every x in W^{\perp}, we have $\operatorname{proj}_{W}(x)=0$.
(4) The range of proj_{W} is W and the null space of proj_{W} is W^{\perp}.

Corollary. Let $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal set, and let x be a vector in $W=$ Span \mathcal{B}. Then

$$
x=\operatorname{proj}_{W}(x)=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m} .
$$

In other words, the \mathcal{B}-coordinates of x are $\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \ldots, \frac{x \cdot u_{m}}{u_{1} \cdot u_{m}}\right)$.

Fact. Let W be an m-dimensional subspace of \mathbf{R}^{n}, let $\operatorname{proj}_{W}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the projection, and let A be the matrix for proj $_{L}$.
(1) A is diagonalizable with eigenvalues 0 and 1; it is similar to the diagonal matrix with m ones and $n-m$ zeros on the diagonal.
(2) $A^{2}=A$.

SECTION 6.4.

The Gram-Schmidt Process. Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis for a subspace W of \mathbf{R}^{n}. Define:
(1) $u_{1}=v_{1}$
(2) $u_{2}=v_{2}-\operatorname{proj}_{\operatorname{Span}\left\{u_{1}\right\}}\left(v_{2}\right) \quad=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$
(3) $u_{3}=v_{3}-\operatorname{proj}_{\operatorname{span}\left\{u_{1}, u_{2}\right\}}\left(v_{3}\right) \quad=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$
\vdots
m. $u_{m}=v_{m}-\operatorname{proj}_{\text {Span }\left\{u_{1}, u_{2}, \ldots, u_{m-1}\right\}}\left(v_{m}\right)=v_{m}-\sum_{i=1}^{m-1} \frac{v_{m} \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}$

Then $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is an orthogonal basis for the same subspace W.

SECTION 6.5.

Definition. A least squares solution to $A x=b$ is a vector \hat{x} in \mathbf{R}^{n} such that

$$
\|b-A \widehat{x}\| \leq\|b-A x\|
$$

for all x in \mathbf{R}^{n}.
Theorem. The least squares solutions to $A x=b$ are the solutions to

$$
\left(A^{T} A\right) \widehat{x}=A^{T} b
$$

Theorem. If A has orthogonal columns $v_{1}, v_{2}, \ldots, v_{n}$, then the least squares solution to $A x=$ b is

$$
\widehat{x}=\left(\frac{b \cdot v_{1}}{v_{1} \cdot v_{1}}, \frac{b \cdot v_{2}}{v_{2} \cdot v_{2}}, \cdots, \frac{b \cdot v_{n}}{v_{n} \cdot v_{n}}\right) .
$$

Theorem. Let A be an $m \times n$ matrix. The following are equivalent:
(1) $A x=b$ has a unique least squares solution for all b in \mathbf{R}^{n}.
(2) The columns of A are linearly independent.
(3) $A^{T} A$ is invertible.

In this case, the least squares solution is $\left(A^{T} A\right)^{-1}\left(A^{T} b\right)$.
Review. Examples of best fit problems using least squares.

