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Abstract

In this technical report we present two suites of FORTRAN codes, LESLIS and LESLIL, for approx-
imating Lyapunov exponents of nonautonomous linear differential systems by QR methods. The
two codes are very similar, the main difference being that LESLIS is apt to solve small systems for
which we can store the coefficients’ matrix, while LESLIL is geared for large systems for which the
coefficients’ matrix is not stored and only its action on a vector is required. We summarize options,
capabilities, and limitations, of the codes. Examples are given to show how to setup drivers, and
to show performance of the codes. A limited comparison of the different options is also provided.
Finally, we highlight how these codes are used to approximate other spectral information of linear
systems, such as the Exponential Dichotomy spectrum.
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Chapter 1

Approximating Lyapunov

Exponents

1.1 Disclaimer

Using the results of our codes require sensible interpretation. Why? Lyapunov exponents
provide the fundamental quantities by which we are able to measure the asymptotic exponential
behavior of solutions of differential equations. By the very nature of the limiting process intrinsic in
the definition of Lyapunov exponents, the approximation of these quantities is bound to be limited
in extent, and perhaps the approximations themselves may be considered of dubious validity.
On the other hand, enough progress has been made at least in identifying which tools are at our
disposal if we are interested in approximating Lyapunov exponents. For this reason, we believe that
the time is ripe for providing the scientific community with some tools to approximate Lyapunov
exponents, much in the same way as about 50 to 40 years ago codes begun being developed for
approximating eigenvalues of matrices. Indeed, our scope in developing LESLIS and LESLIL (and
LESNLS and LESNLL) has been to create a platform for growth, and a benchmark: We believe that
some of the choices we have adopted will be refined and improved by us and others in the years
ahead as more complete numerical analysis of the task becomes available. At the same time, our
codes are a sensible implementations of methods which are state of the art for approximating
Lyapunov exponents.

1.2 Introduction

Since their inception –about 100 years ago, in the thesis of Lyapunov [34]– Lyapunov exponents
(LEs, for short) have proved to be an extremely valuable tool to study dynamical systems, and
nowadays Lyapunov exponents (in some of their several adaptations) are routinely used in many
scientific studies. To name some of their uses, they are used to analyze asymptotic stability of
continuous and discrete systems, to analyze time series, to test the limits of predictability of models,
to indicate chaotic behavior of a dynamical system, to assess effects of random perturbations of a
system, to estimate entropy, dimension of attractors, as well as to force desired stabilization of a
system.

Lyapunov exponents lead naturally to a definition of spectrum of a linear non-autonomous
system, but there are also other (non equivalent) useful definition of spectra, for example the
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LESLIS, LESLIL 3

Exponential Dichotomy (or Sacker-Sell) spectrum. Both these spectra are useful in the study of
dynamical systems.

In spite of such widespread use, the numerical approximation of spectra remains a very delicate
and computationally demanding task. For one thing, the spectra provide information on the
asymptotic behavior of a system, and it is obviously impossible to compute on an infinite time
interval. Unsurprisingly, in the literature one often finds the concept of so–called finite time

Lyapunov exponents, and it is argued that these are the quantities of physical interest. Moreover,
in general, there are (at least) two Lyapunov exponents associated to a given trajectory of a
dynamical system, one defined as lim sup, the other as lim inf. These two values make up the
endpoints of the so-called Lyapunov spectral interval relative to the given trajectory.

In this report, we will restrict to linear problem. In the accompanying report [13], we con-
sider nonlinear dynamical systems. In all cases, we are exclusively concerned with the numerical
approximation of spectra for continuous dynamical systems, defined by a system differential
equations and we focus on implementation of methods to approximate spectra by means of
information which can be retrieved from time integration of the differential equations.

We refer to [1, 6] for monographs on Lyapunov exponents, and to [17, 21] for recent recounts with
an eye to numerical approximation. Here below we provide just minimal background information.

1.3 The Problem

Consider the m-dimensional linear system

ẏ = A(t)y , t ≥ 0 , (1.1)

where A is continuous and a fundamental matrix solution has “log-bounded” growth. For example,
A may be bounded: supt ‖A(t)‖ < ∞. Throughout, ‖ · ‖ is the 2-norm.

Define the numbers µj , j = 1, . . . , m, as

µj = lim sup
t→∞

1

t
log ‖Y (t)ej‖ , (1.2)

where the ej ’s are the standard unit vectors and Y (t) is the solution of

Ẏ = A(t)Y , Y (0) = Y0 full rank.

When the sum of these numbers µj is minimized as we vary over all possible ICs (initial conditions)
Y0, the numbers are called the upper LEs of the system, and the ICs are said to form a normal

basis. We will write λs
j , j = 1, . . . , m, for the ordered upper LEs of (1.1). By working with the

adjoint system
Ż = −AT (t)Z ,

we analogously can define (lower) LEs, λi
j , j = 1, . . . , m, which again we consider ordered. The λi

j

and λs
j then make up the endpoints of the so-called Lyapunov spectral intervals. In case in which

λi
j = λs

j = λj , for all j = 1, . . . , m, and

lim
t→∞

1

t
log

(
det(Y (t))

)
=

m∑

j=1

λj ,

then the system is called regular, and in this case the exponents are found as limits. A most
important consequence of regularity is (already in [34]): If we have a regular system with upper
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triangular coefficient matrix B(t) : ẏ = B(t)y , then, for j = 1, . . . , m, its Lyapunov exponents are

given by

λj = lim
t→∞

1

t

∫ t

0

Bjj(s)ds . (1.3)

Nearly all numerical works of which we are aware (see references at the end) assume that the
system is regular. Although a convenient1 assumption, regularity is not sufficient to guarantee sta-
bility of the Lyapunov exponents, which is what we need to have in order to pursue computational
procedures for their approximation.

Stability for the LEs means that small perturbations in the function of coefficients, A, produce
small changes in the LEs. Millionschikov (see [36, 35]) and Bylov and Izobov (see [5]) gave condi-
tions under which the LEs are stable, and further proved that these conditions are generic in the
class of linear systems with continuous bounded coefficients. The key assumption needed is inte-

gral separation: “A fundamental matrix solution (written columnwise) Y (t) = [Y1(t), . . . , Ym(t)]
is integrally separated if for j = 1, . . . , m − 1, there exist a > 0 and d > 0 such that

||Yj(t)||
||Yj(s)||

· ||Yj+1(s)||
||Yj+1(t)||

≥ dea(t−s) , (1.4)

for all t, s : t ≥ s”. In the cited works, it is proved that “If the system (1.1) has different char-
acteristic exponents λ1 > . . . > λm, then they are stable if and only if there exists a fundamental
matrix solution with integrally separated columns”.

Often, only the n most dominant (outermost to the right) spectral intervals are needed (and
n can be much smaller than m). In these cases, the matrix Y0 of initial conditions is made up by

just n columns (often taken to be

(
In

0

)
) and thus Y : t ∈ IR → IRm×n. With this in mind, we

will henceforth restrict to the case in which n LEs are desired for an m-dimensional linear system.

1and quite reasonable in many practical situations, see [38]



Chapter 2

QR approaches

The chief difficulty in approximating the LEs is that direct integration of a fundamental matrix
solution of (1.1) is a well known unadvisable thing to do. Indeed, the most successful general tech-
niques rest on transformation of the matrix solution (or of the coefficient function) to simpler forms
from which the exponents may be extracted. LESLIS and LESLIL are based upon transformation
to triangular form. This is clearly advantageous. In fact, if the system is triangular and regular1:
Ṙ = B(t)R with B upper triangular, then the exponents are attained from the time averages of
the diagonal of B (see (1.3)):

λi = lim
t→∞

1

t

∫ t

0

Bii(s)ds , i = 1, . . . , n , (2.1)

or equivalently as

λi = lim
t→∞

1

t
log Rii(t) , i = 1, . . . , n . (2.2)

Naturally, one cannot rely on transformations which do not have guaranteed stability, or which
are not globally defined for all times. For this reason, the successful techniques all involve use
of orthogonal transformations, in particular giving the QR factorization of the matrix solution.
These are the methods we implemented in LESLIS and LESLIL. In a nutshell, these techniques
are based on the well known fact that Y can be uniquely smoothly decomposed as product of
an orthonormal function and an upper triangular function with positive diagonal. Then, in case
the system is regular, (2.1-2.2) can be used to approximate the exponents. Two flavors of QR
techniques have been developed, discrete and continuous. We recall them next.

Note. In what follows, when we will talk about the QR factorization of a (full rank) matrix,
or of a matrix valued function, we will always refer to the unique QR factorization for which the
diagonal of R has positive entries.

2.1 Discrete QR method

Let t0 = 0, and Y0 = Q0R0. Suppose we want the QR factorization of Y at the point tk+1.
For j = 0, . . . , k, progressively define Yj+1(t) = Y (t, tj)Qj , Yj+1 : t ∈ [tj , tj+1] → IRm×n, as the
solution of {

Ẏj+1 = A(t)Yj+1 , tj ≤ t ≤ tj+1

Yj+1(tj) = Qj ,
(2.3)

1recall that (1.1) is regular, if the LEs exist as limits and limt→∞

1

t

∫
t

0
(traceA(s))ds =

∑
n

i=1
λi

5
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and update the QR factorization as

Yj+1(tj+1) = Qj+1Rj+1 , (2.4)

so that
Y (tk+1) = Qk+1 [Rk+1Rk · · ·R1R0] (2.5)

is the sought QR factorization of Y (tk+1): Qk+1 ∈ IRm×n and
∏0

j=k+1 Rj ∈ IRn×n. The upper
LEs are given by the relation (cfr. with (2.2))

λi = lim sup
k→∞

1

k

k∑

j=0

log(Rj)ii , i = 1, . . . , n . (2.6)

2.2 Continuous QR method

Let t0 = 0, and Y0 = Q0R0. The idea of the continuous QR method is to solve the differential
equations governing the evolution of the Q and R factors in the QR factorization of Y , without
explicitly finding Y . Moreover, R is not really needed, and only Q can be approximated. We see
this next.

Differentiating the relation Y = QR one gets Q̇R + QṘ = A(t)QR, and multiplying by QT on
the left one gets the equation for R:

Ṙ = B(t)R , R(0) = R0 , B(t) := QT A(t)Q − S , (2.7)

where we have set S := QT Q̇. Since QT Q = I , then S is skew-symmetric with values in IRn×n,
and since R is triangular then S is given by

Sij =





(QT (t)A(t)Q(t))ij , i > j,
0, i = j,

−Sji, i < j.
(2.8)

Next, multiplying Q̇R+QṘ = A(t)QR by R−1 on the right, and using (2.7), we get the differential
equation for Q:

Q̇ = (I − QQT )A(t)Q + QS , Q(0) = Q0 . (2.9)

From (2.7), the (upper) LEs are defined as (cfr. (2.1))

λi = lim sup
t→∞

1

t

∫ t

0

(QT (s)A(s)Q(s))iids = lim sup
t→∞

1

t

∫ t

0

Bii(s)ds , i = 1, . . . , n . (2.10)



Chapter 3

Implementation

Here we describe how we implemented the QR methods outlined in the previous chapter. The
overall goal is to compute approximations –for given values of t– to the quantities λi(t), i = 1, . . . , n,
(see (2.1, 2.2)) herein defined as

λi(t) =
1

t
νi(t) , i = 1, . . . , n, (3.1)

where the νi’s are defined as
νi(t) = log Rii(t) , i = 1, . . . , n , (3.2)

or equivalently as

νi(t) =

∫ t

0

Bii(s)ds , i = 1, . . . , n . (3.3)

Of course, (3.2) is more natural when one uses a discrete QR method, while (3.3) is more natural
when one uses a continuous QR method. In a typical use, our codes will proceed with adaptive
stepsizes obtained by controlling local errors on the νi(t), i = 1, . . . , n, with respect to a preassigned
tolerance vector TOL (TOL is a vector of length n).

In what follows, the superscript “c” will refer to computed, hence approximate, quantities. For
example, we will write νc

i (t) to mean an approximation to either one of (3.2) or (3.3).

3.1 Discrete QR method

On the surface, implementing this method is rather straightforward, and indeed this is the
most widely adopted technique amongst practitioners. However, it may not be the most efficient
or reliable technique; e.g., for linear problems, the argument in [14] shows that it is not. And,
regardless, careful implementation of the approach is warranted.

On a typical step from tj to tj+1, there are three tasks to carry out: (i) To integrate (2.3) (ii) To
compute the QR factorization (2.4), and (iii) To update the approximation to λi(tj+1), i = 1, . . . , n.
These are dealt with as follows.

(i) The differential equation (2.3) is integrated with embedded RK schemes. We implemented
two such pairs. The first is the well known Dormand-Prince pair of order (5,4), the other is
the Runge-Kutta 3/8 rule with embedded formula in the FSAL style, thereby giving a pair
of order (4,3). We will henceforth refer to these pairs as DP5 and RK38. The Runge-Kutta
coefficients are given in the Appendix, and see [31]. Thus, at the end of a step, we have two

7
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approximations to Yj+1(tj+1) in (2.4), call them Yj+1 (the higher order formula) and Ŷj+1.
It is quite important to point out immediately that no error control is performed on these
approximations; see (iii) below.

(ii) As far as the QR factorizations of Yj+1 and Ŷj+1, we implemented our own modified Gram-
Schmidt procedure, as well as tested it against the QR routine from LAPACK which is based
on Householder transformations (and which we post processed in order to guarantee that the
R-factor had positive diagonal). In our tests, our routine was consistently faster, and thus
we adopted it as default.

(iii) From the QR factorization of Yj+1 and Ŷj+1, we obtain two approximations to Rj+1 in (2.4),

call them Rc
j+1 and R̂c

j+1 which can be used to perform error control. We use a mixed error
control on the one step error to νi, i = 1, . . . , n, as follows. Let h be the current stepsize,
and hnew the new stepsize. Then, subject to the restriction that hnew ≤ 5h, we choose hnew

as follows.

- Estimate the worse error componentwise with respect to the desired tolerance:

err = max
1≤i≤n

{|(Rc
j+1)ii − (R̂c

j+1)ii|/
[
(1 + |(Rc

j+1)ii|)TOLi

]
} . (3.4)

- Now estimate
hnew = safe |h (1/err)l| (3.5)

where safe is a safety factor we set at 0.8, and l = 1/5 for DP5 and l = 1/4 for RK38.

- If err ≤ 1 the step is successful and accepted, otherwise is rejected. In the latter case,
we never allow hnew to be less than 1/5 of h. [Though this may theoretically lead to
repeated failures, in our experience it is a safeguard against drastic, but unwarranted,
stepsizes’ reductions].

Finally, after a successful step, we are ready to update the approximations:

λc
i (tj+1) =

tj
tj+1

λc
i (tj) +

1

tj+1
log(Rc

j+1)ii , i = 1, . . . , n . (3.6)

Remark 3.1.1 The adaptive stepsize strategy above is similar to, but more conservative than, the
one explained in [31]. A difference is that we advance the solution with the high order scheme, but
estimate the local errors and new stepsize according to the lower order approximation.

3.2 Continuous QR method

On the surface, this method also looks rather simple. On a step from tj to tj+1 = tj + hj , we
need to: (i) Integrate (2.9) with initial conditions given by Qj (i.e., our approximation Qc(tj)), and
(ii) Update the approximations to νi(tj+1) in (3.3). These two tasks are actually quite delicate. In
particular, for (i) there are a host of possibilities which deliver approximations which are orthogonal
at the grid points; references [4, 7, 14, 15, 16, 19, 23, 32] all address this issue, and there are also
public domain codes, [20], for this task. However, and in spite of us being the authors of the code
QRINT in [19], we ended up revisiting some old ideas, and proposing also a new method. The reason
we did not adopt QRINT is that the structure of the code made it hard to exploit sparsity structure
of A for large problems, and we wanted methods which were flexible enough to accommodate
sparse, and large, A.
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Now, our task is to approximate (3.3). Thus, since

νi(tj+1) = νi(tj) +

∫ tj+1

tj

Bii(t)dt , i = 1, . . . , n ,

we really need to approximate the local integrals

µi =

∫ tj+1

tj

(QT (t)A(t)Q(t))iidt , i = 1, . . . , n . (3.7)

To approximate (3.7) requires a quadrature, and approximations to Q in the subinterval [tj , tj+1].
Which quadrature we use depends on the scheme adopted to approximate Q. We now discuss this
latter issue in details. As consequence of how we approximate Q, we will see how the µi’s are also
approximated. Of course, (3.7) is the same as solving on the step [tj , tj+1] the differential equation

µ̇i = (QT (t)A(t)Q(t))ii , µi(tj) = 0 , i = 1, . . . , n . (3.8)

3.2.1 Q-integration

We explored several possibilities. Let Q̇ = F (t, Q) be a shorthand notation for (2.9).

(1) In [15], the authors proposed a straightforward method to approximate the solution of (2.9):
integrate (2.9) with an explicit Runge-Kutta scheme (for us, the pairs DP5 or RK38), and
orthogonalize the obtained solution(s) at the end of the step. The orthogonalization is done
by replacing the obtained approximation with the Q factor of its QR factorization. We call
this the simple projected scheme. In standard RK notation, the scheme can be written as
follows:

Uj+1 = Qj + hj(b1K1 + . . . + bsKs) , Uj+1 → Qj+1 , (3.9)

where the arrow denotes replacement (via the QR factorization) with an orthonormal basis.
Above, we have set

Kl = F (tj + clhj , Ujl) , Ujl = Qj + hj(al1K1 + . . . + al,l−1Kl−1) . (3.10)

In this case, the µi’s can be approximated by the trapezoidal rule. That is, letting Qj+1 be
the higher order approximation obtained, we would form

µc
i =

hj

2

(
(QT

j A(tj)Qj + Qj+1A(tj+1)Qj+1)ii

)
. (3.11)

This way of proceeding is given as an option in LESLIS and LESLIL, though it is not our
recommended choice. If this choice is adopted, error control can only be performed on the
Q-factor. That is, calling Q̂j+1 the lower order approximation obtained, an error control
similar to the one of the discrete QR method is used for the max-element norm on each
column of the Q-factor. More precisely, the estimate err is obtained as

err = max
1≤i≤n

{
(
‖(Qj+1 − Q̂j+1):,i‖∞

)
/
[
(1 + ‖(Qj+1):,i‖∞)TOLi

]
} (3.12)

which is then used to select hnew in (3.5).

(2) The default integrator for (2.9) implemented in our codes is a slightly different scheme than
the simple projected scheme above, and we will call it the complete projected scheme. Upon
using an explicit Runge-Kutta scheme (DP5 or RK38) to integrate (2.9), we orthogonalize all
stage values as well. Again, the orthogonalization is carried out by using the QR factorization
of the stage values and retaining the Q factor. So doing, we can use the same quadrature
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as the basic scheme for approximating the µi’s. In standard RK notation, the basic step we
take is

Uj+1 = Qj + hj(b1K1 + . . . + bsKs) , Uj+1 → Qj+1 , (3.13)

but now (cfr. with (3.9-3.10))

Kl = F (tj + clhj , Qjl) , Ujl → Qjl , (3.14)

and the µi’s are approximated (see (3.8)) as

µc
i = hj (b1f1 + . . . bsfs) , fl =

(
QT

jlA(tj + clhj)Qjl

)
ii

. (3.15)

Now we will have obtained two approximations to the Q factor, Qj+1 and Q̂j+1, and two
approximations to the µi’s, call them µc

i and µ̂c
i . We can control the error on the Q-factor

as in (3.12), or can use µc
i and µ̂c

i to perform error control directly. That is, we can now
estimate err as

err = max
1≤i≤n

{
(
|µc

i − µ̂c
i |

)
/
[
(1 + |µc

i |)TOLi

]
} (3.16)

and again use (3.5) to select the new stepsize.

(3) Finally, there is one more integration scheme in LESLIS-LESLIL for solving (2.9). We will call
it the hybrid scheme. Apparently, this is a new scheme1. The idea is very simple: We find
approximation to the solution of (2.9) by projecting (via the QR factorization) the computed
approximation to (2.3). In other words, on the step [tj , tj+1], we integrate with DP5 or RK38
the differential equation

Ẏ = A(t)Y , Y (tj) = Qj ,

and only retain the Q-factor of the obtained approximations. Again, this can be done for
all stage values and then the quadrature rule given by the integrators is used to obtain µc

i

and µ̂c
i , otherwise if we only orthogonalize at the end of the step then (3.11) is used. In the

first case we have a complete hybrid projected scheme and error control can be performed
on the µi’s and/or on Q, in the latter case we have a simple hybrid projected scheme and
error control can only be performed on Q. To exemplify, the simple hybrid projected method
looks like

Yj+1 = Qj + hj(b1K1 + . . . + bsKs) , Yj+1 → Qj+1 ,
Kl = A(tj + clhj)Yjl , Yjl = Qj + hj(al1K1 + . . . + al.l−1Kl−1) ,

(3.17)

and µc
i from (3.11). The complete hybrid projected method, instead, has as only difference

that in (3.17), after forming Yjl, we do

Yjl → Qjl , (3.18)

and the µi’s are then approximated from (3.15). Notice that the projection step (3.18) is
carried out only to provide the needed values for using (3.15), but the values Yjl are not
modified in (3.17).

Remark 3.2.1 In spite of solving the same differential equations, the hybrid scheme and the discrete
QR method are distinctly different. The key difference is that only the Q-factor in the QR
factorization of the transition matrices is retained in the hybrid scheme and the R-factor is never
used, unlike in the discrete QR method. The hybrid scheme is also distinctly different from the
projected schemes, since the hybrid scheme advances the solution by projecting the solution of

1We had used this technique in the past, but neglected it for many years since our unrefined implementations at
the time misled us.
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the linear system Ẏ = A(t)Y , not by projecting the solution of (2.9). On a given step, solving
the linear system is less expensive than integrating (2.9). This fact becomes apparent in case we
use (3.11), less so if we also project the stage values approximations and perform the full RK
approximation for the µi’s: Indeed, in this case, the key expense is in forming the integrand and
this is obtained as a bonus with the complete projected schemes.

Remark 3.2.2 In case we can control either the error on Q or on the µi’s directly, according to
either (3.12) or (3.16), one must appreciate in which way these two error controls differ. In case
we use (3.16), or (3.4), then we are effectively performing a local error-per-step control on the
values µi’s in (3.7). In case we use (3.12), then we are effectively trying to control the error in
the integrand of (3.7). Though this resembles a local error-per-unit-step control on the values µi’s
in (3.7), and it often acts that way, it may occasionally be misleading. For example, think of the
case of A being triangular and Q the identity! In our experience, enforcing (3.16) without also
enforcing (3.12) is potentially inaccurate.

Important. Many of the above possibilities implemented in leslis and leslis are not foolproof.
They have been maintained in the codes to provide the user with a variety of testing options,
and because each has potentially distinct advantages. Nevertheless, it is our experience that the
best general strategy consists of using the complete projected scheme with associated full RK
approximations of the integrals and error control performed via both (3.12) and (3.16).

3.3 Order results

It might not be immediately clear that all schemes we implemented for discrete and continuous
QR methods maintain the order of the underlying RK scheme. However, it is not hard to convince
oneself that this is the case. The reasoning relatively to the complete projection and hybrid schemes
has not been reported elsewhere, so we now review it.

For the complete projection schemes, the basic fact is that the projection of the stage values
is not changing the order of approximation of the stage values themselves. As a consequence, the
order of the scheme is not changing either.

For the hybrid schemes, the basic fact is that the unique Q-factors in the QR factorizations of
the Y -values in (3.17)-(3.18) are of the same order of accuracy of the Y -values themselves.



Chapter 4

LESLIS and LESLIL: The Codes

The basic mindframe of LESLIS and LESLIL is that the user gives a time T , and the codes
return approximations to

λi(T ) =
1

T
log Rii(T ) , i = 1, . . . , n , (4.1)

when one chooses a discrete QR method, or to

λi(T ) =
1

T

∫ T

0

Bii(s)ds , i = 1, . . . , n , (4.2)

when one uses a continuous QR method. If the user decides to continue for some larger values of
T , then must simply call the codes again.

The information in (4.1-4.2) is immediately conducive to approximation of the Lyapunov expo-
nents and can also be used to approximate other spectral intervals, as we will elucidate in Chapter
5.

4.1 LESLIS and LESLIL: Differences

Before calling either LESLIS or LESLIL, the user must call the subroutine INIT: this will be called
only once, regardless of integration options. The user must call INIT after having set the input
data specified in IPAR as well as the initial and final times, and error tolerances (see below, and
see the Appendix for sample calls). A call to INIT will have the form

CALL INIT(M,N,IPAR,T0,TE,DT,TOLQ,TOLL,FWORK,IFLAG)

In INIT, the code sets up the workspace, check error tolerances, initial and final times, and sets
dafault quantities. After having called INIT, the user can call LESLIS or LESLIL.

The major difference between LESLIS and LESLIL is the way the coefficient function A is defined
by the user.

In LESLIS, the user must provide a subroutine where A(t) is given, at any t. In LESLIL, the
user must provide a subroutine where the action A(t)v, at any t, is given (here, v is a generic
vector). This is the only difference the user will see between LESLIS and LESLIL.

(a) A call to LESLIS will be done as follows:
CALL LESLIS(GETA,M,N,APPLES,T0,TE,DT,Y0,TOLQ,TOLL,IPAR,FWORK,IFLAG,INARR,REARR)

where GETA, declared EXTERNAL, is the subroutine where the user defines A(t) and must obey
the syntax

12
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SUBROUTINE GETA(M,T,A,INARR,REARR)

INTEGER M, INARR(*)

DOUBLE PRECISION T, A(M,M), REARR(*)

(b) Instead, a call to LESLIL will be done as:
CALL LESLIL(GETAV,M,N,APPLES,T0,TE,DT,Y0,TOLQ,TOLL,IPAR,FWORK,IFLAG,INARR,REARR)

where GETAV, declared EXTERNAL, is the subroutine where the user defines v̇ = A(t)v and
must obey the syntax

SUBROUTINE GETAV(M,T,V,VDOT,INARR,REARR)

INTEGER M, INARR(*)

DOUBLE PRECISION T, V(M), VDOT(M), REARR(*)

In the above, INARR, REARR are integer and double precision arrays the user can use for com-
munication between the driver and the subroutines.

In the Appendix, we attach sample drivers to illustrate how the codes are called. Next, we
briefly review the meaning of the INPUT/OUTPUT to the codes. More extensive documentation can
be found in the interface to the codes themselves.

4.2 LESLIS and LESLIL: Input and Options

Typically, the user will write a driver where integration options are specified. In a nutshell,
and subject to compatibilities between his/her requests, the user must specify: (1) whether to
use a discrete or continuous QR method and which formulas, (2) how to approximate the ν’s
in (3.2-3.3), (3) if to proceed with fixed or variable stepsizes, and how to perform error control.
This communication between the user and the codes is handled through the array IPAR, and by
monitoring IFLAG the user knows if the required tasks have been accomplished. The following is
an explanation of the INPUT/OUTPUT to LESLIS-LESLIL.

- M: INPUT, the dimension of the problem, must be ≥ 1.

- N: INPUT, the number of the approximate quantities in (4.1-4.2) desired, must have 1 ≤ N ≤ M

- APPLES: OUTPUT only, the approximations to (3.1).

- T0: Initial time on INPUT, final time reached on OUTPUT.

- TE: Final time where approximations to (3.1) are desired. Can have TE < T0 or TE > T0.

- DT: INPUT/OUTPUT, the stepsize in fixed stepsize mode, stores the last chosen stepsize in
variable stepsize mode.

- Y0: An (m, n) matrix which on INPUT contains the ICs to the fundamental matrix (see
IPAR(4)). On OUTPUT, it contains the Q-factor at the point we reached.

- TOLQ: INPUT, scalar. This is the local error tolerance on the sup-norm error for the columns
of Q.

- TOLL: INPUT, N-dimensional array. These are local error tolerances on the approximation to
the Lyapunov exponents.

- IPAR: communication array. Most options can be defaulted, and the most relevant options
are the following.

- IPAR(1): specifies fixed or variable stepsize.
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- IPAR(2): specifies if want code to return control to the driver after every successful
step, or only at TE.

- IPAR(4): specifies (seeting IPAR(4).NE.0) if user provided ICs on the fundamental

matrix Y0. If not, the code sets the default:

(
In

0

)
.

- IPAR(8): specifies which method and RK formula to use:

- IPAR(8)=0 (default) is Continuous projected QR method with DP5

- IPAR(8)=1 is Continuous hybrid QR method with DP5

- IPAR(8)=2 is Continuous projected QR method with RK38

- IPAR(8)=3 is Continuous hybrid QR method with RK38

- IPAR(8)=4 is Discrete QR method with DP5

- IPAR(8)=5 is Discrete QR method with RK38

- IPAR(9): specifies if the quantities in (3.3) are found by the RK integration on the
ν-variables (IPAR(9)=0) or by the composite trapezoidal rule (IPAR(9)=1). Naturally,
IPAR(9)=1 can only be required when IPAR(8)=0,1,2,3.

- IPAR(10): subject to compatibility with the chosen method, IPAR(10) specifies on
which variables to perform error control. [See Remark 3.2.2]. In the most general form,
one may be able to control the local errors on the approximation to the factor Q and/or
to the Lyapunov exponents, with error tolerances specified by TOLQ and TOLL. To be
precise, IPAR(10)=0 means error control on the Lyapunov exponents only, IPAR(10)=1
means error control on Q only, and IPAR(10)=10 means error control on both the
Lyapunov exponents and Q. Naturally, IPAR(10)=1,10 can only be required when
IPAR(8)=0,1,2,3.

- FWORK: this array contains all work space.

- IFLAG: communicates to the user if the integration was successfully completed or not (various
diagnostics are then produced).

- INARR, REARR: user-defined arrays to communicate parameters between the code and the
subroutines GETA or GETAV.



Chapter 5

Getting the spectra

In this Chapter, we explain how one can post-process the information produced by LESLIS

or LESLIL in order to approximate Lyapunov exponents, and Lyapunov spectrum, as well as the
Exponential Dichotomy spectrum ΣED. We also discuss how we can use the information produced
by the codes to test for the stability of Lyapunov exponents. Of course, there may be other ways
to proceed for these tasks, but our goal is to explain how one can accomplish them using only the
averages of the diagonal elements over the current time step, which is information obtained from
LESLIS and LESLIL. To reiterate, the codes return (4.2) or equivalently (4.1). Below, we will often

refer just to
∫ T

0
Bii(s)ds, but of course this is the same as log(Rii(T )).

We are interested in the approximation of the Lyapunov and the Exponential Dichotomy spec-
tra, ΣED. Recall that ΣED is defined as the set of real values λ for which the shifted system

ẏλ =
[
A(t) − λI

]
y

does not have Exponential Dichotomy. Recall also that ΣED is given by the union of at most m
non overlapping intervals. In general, we will be interested in approximating the n most dominant
intervals. The reason why the approximation of this spectrum is possible is explained in [17, 18].
Presently, it suffices to recall that ΣED can be obtained from the diagonal of the transformed upper
triangular system (2.7): That is, using information which we have been able to compute (either B
in (2.7) or the diagonal of R).

Here below, we discuss how in a post-processing step, one can obtain:

• Approximation of Lyapunov spectrum,

• Steklov averages of diagonal elements to approximate ΣED and assess variability of Lyapunov
exponents,

• Steklov differences to infer stability of Lyapunov exponents.

5.1 Post-Processing for the LEs

Approximate Lyapunov exponents are basically returned by the codes leslis and leslil in the
variable APPLES. In fact, in APPLES the codes return the values (4.1)-(4.2). So, a standard use
of the codes is to monitor these values to see if convergence is taking place. If these values
are converging, we may conclude that the system is regular and that we have approximated its
Lyapunov exponents. On the other hand, if convergence is not taking place, one may want to
monitor the variation in the values of APPLES on a sufficiently large interval to approximate the

15
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Lyapunov spectral intervals; this is essentially the approach we used in [17] to approximate the
spectral intervals.

5.2 Other spectra

To approximate ΣED, one may compute Steklov averages. We adopted this approach in [17], and
it has met with some success.

First, recall that, for a continuous bounded function f , the Steklov function or Steklov average
of f with step H > 0 is defined as (see [1, Definition 5.4.1] and [6])

fH(t) =
1

H

∫ t+H

t

f(τ)dτ. (5.1)

Now, given any H > 0, for i = 1, . . . , n, consider

αH
i = inf

t

1

H

∫ t+H

t

Bii(s)ds and βH
i = sup

t

1

H

∫ t+H

t

Bii(s)ds . (5.2)

We showed in [17, Theorem 8.4] that [αH
i , βH

i ] can be used to approximate the i-the spectral
interval of ΣED, i = 1, . . . , n. So, here below we explain how one can use the output of our codes
to approximate the intervals [αH

i , βH
i ].

Remark 5.2.1 To facilitate approximation of the Sacker-Sell or Exponential Dichotomy spectrum
and infer integral separation between consecutive diagonal elements of the upper triangular coef-
ficient matrix function, B, the values returned in APPLES at consecutive time levels are employed.
In particular, in one step mode we form

∫ tk+1

tk

Bii(s)ds = tk+1[
1

tk+1

∫ tk+1

0

Bii(s)ds] − tk[
1

tk

∫ tk

0

Bii(s)ds]

for all consecutive step levels tk, tk+1. Postprocessing may then be performed given the value of the

current time step hk := tk+1 − tk and approximations to the values
∫ tk+1

tk
Bii(s)ds for i = 1, ..., n.

The first step is to use an interpolant so that the integrals of the Bii are approximated over a
fixed stepsize. Then appropriate Steklov averages are computed to approximate ΣED and integral
separation between consecutive Bii.

We assume now that we have approximations to the integrals of the desired Bii with respect
to some fixed step size h. Then choose a Steklov window length H such that H = N · h for some
positive integer N . For each i we store and sum the first N consecutive approximations to the
integrals of the Bii. When each subsequent integral is read in it the first integral in the sum is
subtracted from the sum, the new integral s added to the sum, the old integral is overwritten with
the new integral, and (5.2) is easily approximated.

5.3 Integral separation

One more use of the output from LESLIS/LESLIL is to assess the degree of integral separation of
the transformed coefficients’ function B in (2.7), and therefore assess the stability of the Lyapunov
exponents. Recall that distinct Lyapunov exponents λ1 > λ2 > . . . > λn are stable if and only if
the functions Bii, Bi+1,i+1, i = 1, . . . , n − 1, are integrally separated.

Recall also that for two bounded functions f1 and f2 (say, two consecutive diagonal elements
of the upper triangular function B in (2.7)) to be integrally separated means that

∫ t

s

(f1(τ) − f2(τ))dτ ≥ a(t − s) − d, a > 0, d ∈ IR, t ≥ s . (5.3)
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The importance of Steklov functions resides in the fact that (5.3) can be inferred from the Steklov
average of the difference f1−f2. This is the content of [1, Lemma 5.4.1]. In other words, f1 and f2

are integrally separated if and only if for sufficiently large H their Steklov functions are separated:

fH
1 (t) − fH

2 (t) =
1

H

∫ t+H

t

(f1(τ) − f2(τ))dτ ≥ a > 0, t ≥ 0 . (5.4)

We can use the output of our codes to infer whether or not (5.4) holds in a very similar way to
how we approximated ΣED: The only difference is that the integrals of the Bii are replaced with
the difference in the integrals of Bii and Bi+1,i+1 for i = 1, ..., n − 1.



Chapter 6

Examples

We present some examples to highlight performance of the codes. Many more examples have
been used to test the codes, and are part of the collection of problems in the routine user.f which
comes with our codes.
CPU times. All results in this Section refer to computations made on one of the two different
computational platforms below.

(1) A Dell Dimension, with a Pentium 4, 2.5 GHz processor, using g77 GNU compiler with -O
optimization option. The CPU times in Tables 6.1, 6.2, 6.6, and 6.7, refer to computations
done on this environment.

(2) A Dell Inspiron 8200, with a Pentium 4, 1.8 GHz processor, using Watcom Fortrtan 77
compiler with no optimization. The results in Table 6.8, as well as all Figures 6.2–6.13 were
generated on this environment.

6.1 Small systems

These are problems of small size, and are used to illustrate comparative performance of the different
options.

Example 6.1.1 Consider a linear periodic coefficient problem due to Markus and Yamabe. The
linear system

ẏ =

(
−1 + 3

2 cos2(t) 1 − 3
2 cos(t) sin(t)

−1− 3
2 sin(t) cos(t) −1 + 3

2 sin2(t)

)
y ≡ A(t)y

is regular, with Lyapunov exponents λ1 = 1
2 and λ2 = −1, which also form the point spectrum of

the system. The eigenvalues of A(t) are constant, (−1± i
√

7)/4 and suggest that the zero solution
is asymptotically stable, which of course is not true. If we make the orthogonal change of variables
Q(t)w = y with

Q(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)

we obtain the system

ẇ =

(
1/2 0
0 −1

)
w.

We tabulate results in Table 6.1 and illustrate the dependence on IPAR(8), the method employed,
IPAR(10), the error control, and the number of steps taken STEPS, the number of rejections REJS,

18
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Markus and Yamabe Problem. T = 103.

IPAR(8) IPAR(10) TOL Errµ1 Errµ2 STEPS REJS CPU

0 0 1.E-4 4.E-4 4.E-4 1957 977 .054
1 0 1.E-4 4.E-4 4.E-4 1608 0 .030
2 0 1.E-4 2.E-4 2.E-4 2105 0 .027
3 0 1.E-4 3.E-4 3.E-4 3099 1 .036
4 0 1.E-4 2.E-6 2.E-6 2418 0 .032
5 0 1.E-4 2.E-5 2.E-5 5501 0 .054

0 1 1.E-4 2.E-5 2.E-5 1323 48 .014
1 1 1.E-4 1.E-4 1.E-4 2109 0 .033
2 1 1.E-4 2.E-6 2.E-6 4234 0 .055
3 1 1.E-4 3.E-4 3.E-4 3099 0 .026

0 10 1.E-4 2.E-5 2.E-5 1323 48 .023
0 0 1.E-8 1.E-7 1.E-7 2706 3 .050
0 1 1.E-8 1.E-9 1.E-9 5005 0 .110
0 10 1.E-8 1.E-9 1.E-9 5005 0 .103

Table 6.1: Comparison of error, steps, rejections, and CPU times for different methods, error
control, and tolerances.

and the CPU usage CPU. In the table, the value TOL refer to the common value used for all error
tolerances. In this table, as well as in all other tables, we use “exponential notation”; e.g., 1.E-2
means 10−2. It is especially noteworthy to observe the large number of rejections that occur for
IPAR(8)= 0 with IPAR(10)= 0 and TOL= 10−4. This highlights the need to control the error on
Q as well as the error on the exponents, at least for this value of the tolerance.

Example 6.1.2 We have
A(t) = Q(t)D(t)QT (t) + Q̇(t)QT (t) ,

where

D(t) = diag(λ1, cos(t),− 1

2
√

t + 1
, λ4) ,

λ1 > 0, λ4 < 0, and
Q(t) = diag(1, Qβ(t), 1) · diag(Qα(t), Qα(t)) .

We set

Qγ(t) =

(
cos(γt) sin(γt)
− sin(γt) cos(γt)

)
, α = 1, β =

√
2.

We fix λ1 = 1, λ4 = −10. This is a regular system, and the Lyapunov exponents are 1, 0, 0,−10.
In Table 6.2 we vary the method and the tolerance. The need to control the error on Q as well as
the exponents is again highlighted by the large number of rejections that occur with tolerance of
10−4 with the projected DP5 and projected RK38 methods.

We highlight the behavior of the codes on this problem with several figures. In Figure 6.1
we plot the computed Lyapunov exponents as a function of time in a semilog scale. In Figures
6.2–6.11, the values on the x-axis are the negative logarithms (in base 10) of the required error
tolerance; all these results were obtained with TOLL=TOLQ and values between 10−2 and 10−13. In
all figures the legend refers to the combination of IPAR(8)/IPAR(10) we adopted. For example,
the heading 2/1 means that the projected method of order 4 was used with error control on Q. For
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Quasi Periodic Problem. T = 103.

IPAR(8) IPAR(10) TOL STEPS REJS CPU

0 0 1.E-4 7913 3910 1.306
1 0 1.E-4 7177 3585 1.015
2 0 1.E-4 7544 680 .573
3 0 1.E-4 7634 525 .449
4 0 1.E-4 19470 0 1.405
5 0 1.E-4 42992 0 2.055

0 0 1.E-8 16771 159 1.859
1 0 1.E-8 17674 188 1.616
2 0 1.E-8 35791 0 2.504
3 0 1.E-8 38808 0 2.104
4 0 1.E-8 117341 0 8.511
5 0 1.E-8 418392 0 20.080

0 10 1.E-4 8953 119 .899
0 10 1.E-8 52416 0 5.418

Table 6.2: Comparison of error, steps, rejections, and CPU times for different methods, error
control, and tolerances.

these particular problem, all results with IPAR(10)=10 were identical to those with IPAR(10)=1.
Finally, all results refer to computation from 0 to time T = 100.

In Figures 6.2 and 6.3, we give the error (for the 5th and 4th order methods, respectively) in the

truncated exponents 1
T

∫ T

0 Bii(s)ds, i = 1, . . . , n, see (4.2). The y-axis is the negative logarithm
in base 10 of the error (actually, the absolute error for quantities of magnitude less than 1 and
the relative error otherwise). In general, for the continuous QR methods, it is necessary to require
error control on Q to obtain approximation of order of accuracy the same as the error tolerance.
For tight tolerances, the only methods capable to achieve the desired accuracy are the continuous
QR methods implemented with projected schemes and error tolerance on Q.

In Figures 6.4 and 6.5, we give the error in Q. It is interesting to observe that the discrete QR
methods achieve a good error control on Q although this is not explicitly enforced. For all but the
tighter tolerances, the continuous QR methods give error on Q of size of the error tolerance.

Figures 6.6 and 6.7 give the number of successful steps in function of the error tolerances, and
for the different error control options, for methods of order 4 and 5. Figures 6.8 and 6.9, instead,
give the percentage of rejections. We remark that there were no rejections for the discrete QR
methods, both at order 4 and 5, and for all different error tolerances. By looking at Figures 6.6 and
6.7, we can see that the discrete QR methods take more steps than the continuous ones, and that
the continuous methods implemented either as projected or hybrid take about the same number
of steps. It is revealing to observe that the number of steps grows as the theory would demand
for methods of order 5, respectively 4: In fact, for the runs with the dsicrete QR method, or the
continuous ones with error control on Q, the slopes of the graphs in Figures 6.6 and 6.7 are almost
exactly 1/5 and 1/4.

Looking at Figures 6.8 and 6.9, it is apparent that the continuous methods, without requiring
error control on Q are not efficient for large/intermediate values of the error tolerances. Indeed, in
these cases, the large number of rejections leads to inefficient computations as reflected in Figures
6.10 and 6.11 which show the total CPU time. To be precise, on the y-axis is the log10 of the
CPU times, normalized by the minimum CPU time observed (it is 0.07” for these figures). Thus, for
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Figure 6.1: Convergence of Lypaunov exponents for Example 6.1.2.

example, the most expensive run (in Figure 6.11, the discrete QR method with TOL=1.E-13) takes
about 76.7 true seconds: 0.07× 103.04. Looking at these Figures, we observe that the expense (as
measured by the CPU times) grows exponentially as the tolerances decrease, for all methods and
options.

Finally, for comparison purposes, we report on results for the 5th order schemes with the
continuous QR methods using the trapezoidal rule option to approximate the integrals in (3.3). In
Figures 6.12 and 6,13, these results are compared with those in which the integrals are approximated
also at 5th order by the same RK scheme used to approximate Q. Using the trapezoidal rule only
gives the accuracy of a second order method. Naturally, using the trapezoidal rule is less expensive,
but the savings are somewhat marginal: It appears that the cost of using the trapezoidal rule is
about the same as that of not using it, but with tolerances values 10 times as large!

Although different problems produce different shadings in the outcomes, the overall picture on
many problems is similar to that we presented in this example. Thus, we recommend that:
• With adaptive error control, the continuous QR methods must be used enforcing error control
on Q (we recommend IPAR(10)=10).
• For tight error tolerances, the best option is IPAR(8)=0 while for low error tolerances IPAR(8)=2
is appropriate.
• The trapezoidal rule option is of interest only for truly large time T , in which case the convergence
to the exponents is anyhow dominated by the factor 1

T .

Example 6.1.3 This is an example where there are continuous spectra ΣL and ΣED. We replace
D(t) in Example 6.1.2 with

D(t) = diag(f(τ(t)) + 4, f(τ(t)), f(τ(t)) − 1, f(τ(t)) − 4)

where f(x) = cos(x) + sin(x), and τ(t) = ln(t + 1). Then we have

ΣL =
⋃4

i=1[ai, bi] = [3, 5] ∪ [−1, 1] ∪ [−2, 0] ∪ [−5,−3],

ΣED =
⋃4

i=1[αi, βi] = [4 +
√

2, 4 −
√

2] ∪ [−
√

2,
√

2] ∪ [−1−
√

2,−1 +
√

2] ∪ [−4−
√

2,−4 +
√

2].
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Figure 6.2: Error on truncated exponents for Example 6.1.2: 5th order methods.

In this problem we compare the exact and computed values of the spectral intervals. To
approximate ΣL we compute for 0 < τ0 < T ,

inf
T≥t≥τ0

1

t

∫ t

0

Bii(s)ds and sup
T≥t≥τ0

1

t

∫ t

0

Bii(s)ds

and to approximate ΣED we compute for 0 < H < T ,

inf
T−H≥t≥0

1

H

∫ t+H

t

Bii(s)ds and sup
T−H≥t≥0

1

H

∫ t+H

t

Bii(s)ds

Tables 6.3, 6.4, and 6.5 record our approximations to ΣL, ΣED, and the integral separation of
consecutive diagonal elements of B, respectively. We vary τ0 for ΣL, and H for ΣED and integral
separation of the diagonal elements. From Table 6.4, we observe that a time interval of length
T = 106 is required to get a good approximation of the exponential dichotomy spectrum with
Steklov window length of H = 103; smaller values of T and/or H lead to inaccurate results. This
highlights the general difficulty of selecting the time interval and the Steklov window: We are not
aware of any systematic, foolproof, way to select these values.

6.2 Large systems

These are large problems for which we are interested in assessing the relative merits of LESLIL
versus LESLIS.

Example 6.2.1 We consider linearization about a traveling wave solution of the parabolic Nagumo
equation

ut = ε2uxx − f(u), x ∈ IR, t ≥ 0, f(u) = u(u − 1)(u − a), a ∈ (0, 1). (6.1)
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ΣL. T = 105. IPAR(8)=0. IPAR(10)=10. TOL=10−4

τ0 i [ai, bi]

101 1 [2.99105481, 5.00054981]
101 2 [−1.0090923, 1.00040134]
101 3 [−2.00916475, 0.000329240246]
101 4 [−5.00922297,−2.99972667]
103 1 [3.00014447, 5.00054981]
103 2 [−1.00000376, 1.00040134]
103 3 [−2.00007593, 0.000329240246]
103 4 [−5.00013189,−2.99972667]

Table 6.3: Computed approximations to Lyapunov spectrum for Example 6.1.3.

ΣED. IPAR(8)=0. IPAR(10)=10. TOL=10−4

T/H i [αi, βi]

105/101 1 [2.58592912, 5.41437546]
105/101 2 [−1.41420998, 1.41423018]
105/101 3 [−2.41428279, 0.414156513]
105/101 4 [−5.4143401,−2.58589528]
105/103 1 [2.58602723, 5.37346259]
105/103 2 [−1.41412084, 1.37331392]
105/103 3 [−2.41419304, 0.373241827]
105/103 4 [−5.41424902,−2.62681384]
106/103 1 [2.58602723, 5.41437509]
106/103 2 [−1.41412084, 1.41422661]
106/103 3 [−2.41419304, 0.414154302]
106/103 4 [−5.41424902,−2.58590173]

Table 6.4: Computed approximations to exponential dichotomy spectrum for Example 6.1.3.

Integral Separation. IPAR(8)=0. IPAR(10)=10. TOL=10−4

T/H a1 a2 a3

105/101 4.00011782 1.00006544 3.00003553
105/103 4.00014751 1.00007192 3.00005541
106/103 4.00014751 1.00007186 3.00005531

Table 6.5: Computed approximations to integral separation for Example 6.1.3.
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Figure 6.3: Error on truncated exponents for Example 6.1.2: 4th order methods.

The traveling wave ansatz uTW (x, t) = φ(x − ct) gives a 2nd order boundary value problem with
exact solution (unique up to translation)





φ(ξ) = 1
2 [1 ∓ tanh(

√
1

8ε2 · ξ)]

c = ±(1 − 2a)
√

ε2

2 .
(6.2)

If we linearize (6.1) about (6.2) we obtain the linear partial differential equation

ηt = ε2ηxx − f ′(uTW (x, t))η . (6.3)

To obtain a linear system of ordinary differential equations from this PDE, we take x in the
truncated interval [−1, +1], impose periodic boundary conditions and consider two discretizations:
(i) standard finite (centered) differences (large, sparse, matrices), and (ii) spectral (large, but dense,
matrices). Thus, for the grid points xj = −1 + 2(j − 1)/m , j = 1, . . . , m, we seek an approximate
solution z(t) by requiring that (6.3) is satisfied at the grid points:

[
zt = ε2∂xxz − f ′(uTW (x, t))z

]
x=xj

, j = 1, . . . , m .

For spectral discretizations, we replace ∂xx with the spectral approximation A = F−1DF where F
and F−1 are the forward and backward Fourier transforms, respectively, and D is the appropriate
diagonal matrix containing the eigenvalues of ∂xx, and we end up with the following system for
Z = (z(x1, t), . . . , z(xm, t))T :

dZ

dt
= AD(t)Z , AD(t) = ε2A − diag(f ′(uTW (xj , t)), j = 1, . . . , m ) . (6.4)

For our experiments we set the wave speed c = 10−1, the detuning parameter a = 9/16, and the
diffusion coefficient ε2 = 1.28.
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Figure 6.4: Error in Q for Example 6.1.2: 5th order methods.

Results are tabulated in Table 6.6 The savings due to using LESLIL, the code for large systems,
are clear. Finally, in Figure 6.14, we show the convergence behavior of the two largest Lyapunov
exponents of the spectral, respectively finite differences, discretization in fucntion of time. Notice
that all these Lyapunov exponents converge nicely in time, but the second Lyapunov exponent of
the finite difference discretization is far (for the given value of m = 32) from the exact value since
the finite difference approximation to the eigenvalues of the second derivative are far from exact.

Example 6.2.2 Consider

u̇ = a(t)Au + b(t)u, t ≥ t0 ≡ 1, u(·) ∈ IRm (6.5)

where A is orthogonally diagonalizable and a(·), b(·) are bounded and continuous. Then we can
write A = QDQT , D = diag(λj , j = 1, ..., m) and after change of variables, consider the scalar
problems

ẋj = [a(t)λj + b(t)]xj , j = 1, . . . , m . (6.6)

As a specific example, we take λj ’s to be the different eigenvalues of the spectral, respectively
finite difference, discretization of Example 6.2.1. That is, we take

• Spectral: λj = −(jπ)2, j = 0, 1, . . . , m − 1.

• Finite Difference: λj = m2

2 (cos(2jπ/m) − 1), j = 0, . . . , m − 1.

Moreover, we take a(t) = κ + f(θ1(t)) and b(t) = f(θ2(t)) where

f(t) = cos(t) + sin(t), θ1(t) = ln(t), θ2(t) = ln(ωt), ω > 0 (6.7)

so that θ2(t) = θ1(t) + ln(ω). Here κ >
√

2 implies a(t) > 0.
We set κ = 2 and ω = eπ.
ΣL:

µj − κλj = κλj − µ
j

=
√

α2 + β2 = (λ2
j + 2λj cos(ln(ω)) + 1)1/2. (6.8)
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Figure 6.5: Error in Q for Example 6.1.2: 4th order methods.

ΣED:

γj − κλj = κλj − γ
j

=
√

2
√

α2 + β2 =
√

2(λ2
j + 2λj cos(ln(ω)) + 1)1/2. (6.9)

Table 6.7 illustrates the savings of using the large option. In Figure 6.15 we show the conver-
gence in time of the four largest upper Lyapunov exponents, bi = supt≥τ0

∫ t

0
Bii(s)ds for i = 1, ..., 4

with τ0 = 10, for the finite difference discretization.

6.3 Systems with Symmetries

At times, one has to find Lyapunov exponents of systems that have special symmetries, e.g. Hamil-
tonian systems. A typical byproduct of these symmetries is that the Lyapunov exponents enjoy
themelseves special symmetries. For example, Hamiltonian systems have Lyapunov spectra which
are symmetric with respect to the origin. Of course, in these cases, one should take full advantage
of the symmetries and approximate fewer Lyapunov exponents, while recovering the entire set of
exponents exploiting the underlying symmetries.

Example 6.3.1 This is an example from [12]. We have the coefficients’ matrix

A(t) =




0 2 −1 1
1+t 1 2

−2 0 1
1+t 5 cos(t) 4

1 − 1
1+t 0 2 −2 1

− 1
1+t −5 −2 0 −4 cos(t)
1 cos(t) −2 −4 0 sin(t)
2 4 1 cos(t) − sin(t) 0




, t ≥ 0 .

Observe that we have
AT (t)C + CA(t) = 0
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Traveling Wave Problem. T = 101. IPAR(8)=0. IPAR(10)=10. TOL=10−4.

DISC. L/S M N CPU

SPEC L 128 4 5.65
FD L 128 4 1.15

SPEC S 128 4 58.30
FD S 128 4 3.80

SPEC L 64 4 0.70
FD L 64 4 0.15

SPEC S 64 4 4.05
FD S 64 4 0.28

SPEC L 64 16 3.70
FD L 64 16 0.87

SPEC S 64 16 6.15
FD S 64 16 1.03

Table 6.6: Comparison of CPU times for different discretizations, large/small option, and number
of exponents.

Linear Parabolic Problem. T = 102. M = 32. IPAR(8)=0. IPAR(10)=10.

DISC. L/S N TOL CPU

SPEC L 4 1.E-4 35.39
FD L 4 1.E-4 7.32

SPEC S 4 1.E-4 111.76
FD S 4 1.E-4 11.88

SPEC L 4 1.E-8 35.38
FD L 4 1.E-8 7.32

SPEC S 4 1.E-8 111.71
FD S 4 1.E-8 11.87

FD L 8 1.E-8 21.49
FD L 16 1.E-8 48.34
FD S 8 1.E-8 193.58
FD S 16 1.E-8 225.29

FD/TRAP L 8 1.E-8 16.19
FD/TRAP L 16 1.E-8 33.09

Table 6.7: Comparison of CPU times for different discretizations, large/small option, number of
exponents, and tolerance.
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Figure 6.6: Successful steps for Example 6.1.2: 5th order methods.

with

C =

(
Q ⊗ I2 0

0 −Q

)

where Q =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
, 0 < φ < π

2 .

The system is regular, and there are two zero and two possibly nonzero Lyapunov exponents,
symmetric with respect to the origin, each of multiplicity 2. That is, only one Lyapunov exponent
really needs to be computed. At four digits, the two nonzero Lyapunov exponents are {±3.027}.
Results of selected runs are summarized in Table 6.8. All these results have been obtained with
error tolerances all equal to 10−8. It is worthwhile noticing that the time required to compute one
Lyapunov exponents is almost exactly 1/6-th of the time required to approximate all six exponents.



LESLIS, LESLIL 29

2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6
OK−Steps: 4th order

2/0
2/1
3/0
3/1
5/0

Figure 6.7: Successful steps for Example 6.1.2: 4th order methods.
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Figure 6.8: Percentage of rejections for Example 6.1.2: 5th order methods.
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Figure 6.9: Percentage of rejections for Example 6.1.2: 4th order methods.
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Figure 6.10: CPU usage for Example 6.1.2: 5th order methods.
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Figure 6.11: CPU usage for Example 6.1.2: 4th order methods.
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Figure 6.12: Error comparison when using the trapezoidal rule. Example 6.1.2, 5th order methods.
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Figure 6.13: CPU comparison when using the trapezoidal rule. Example 6.1.2, 5th order methods.
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Figure 6.14: Convergence of the first two dominant Lyapunov exponents for the spectral and finite
difference discretizations: Example 6.2.1.
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Figure 6.15: Convergence of the first four upper Lyapunov exponents for the finite difference
discretization: Example 6.2.2.

Problem with Symmetries. IPAR(10)=10 when IPAR(8)=0.

IPAR(8) T N λ1 CPU

0 1.E2 4 3.0044611 1.6
0 1.E3 4 3.0260058 15.5
0 1.E4 4 3.0276900 150.3
0 1.E5 4 3.0276502 1490.9

0 1.E2 1 3.0044611 0.35
0 1.E3 1 3.0260058 2.7
0 1.E4 1 3.0276900 26.4
0 1.E5 1 3.0276502 250.1

4 1.E3 4 3.0260058 9.7
4 1.E5 4 3.0276502 958.7
4 1.E3 1 3.0260058 2.4
4 1.E5 1 3.0276502 233.54

Table 6.8: Comparison of λ1 and CPU times varying the method used, the final time, and the
number of exponents.
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Appendix

7.1 RK coefficients

These are the embedded RK pairs we used. The lower order scheme is the one relative to the
weights b̂.

0 0 0 0 0 0
1
3

1
3 0 0 0 0

2
3 − 1

3 1 0 0 0
1 1 −1 1 0 0

b 1
8

3
8

3
8

1
8 0

1 1
8

3
8

3
8

1
8 0

b̂ 1
12

1
2

1
4 0 1

6

3/8-th Runge-Kutta 4-3 pair: RK38.

0 0 0 0 0 0 0 0
1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45 − 56

15
32
9 0 0 0 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0 0
1 9017

3168 − 355
33

46732
5247

49
176 − 5103

18656 0 0
b 35

384 0 500
1113

125
192 − 2187

6784
11
84 0

1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

b̂ 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Dormand–Prince 5-4 pair: DP5.

34
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7.2 Drivers

Here we give sample drivers for calling the codes. The drivers refer to the Marcus–Yamabe problem,
Example 6.1.1.

7.2.1 Driver for LESLIS

C ... SAMPLE DRIVER FOR LESLIS ...

PROGRAM DRIV

C DECLARE VARIABLES NEEDED BY LESLIS

EXTERNAL GETA

INTEGER M, N

PARAMETER (M=2,N=2)

DOUBLE PRECISION T0, TE, DT, TOLL(N), APPLES(N), Y0(M,N)

INTEGER IPAR(13), IFLAG, IFDIM, INARR

PARAMETER(IFDIM=M*M+11*M*N+8*N+63)

DOUBLE PRECISION FWORK(IFDIM), REARR, TOLQ

INTEGER I

DOUBLE PRECISION ACC

CCCCCCC INPUT: ARRAY IPAR, USE DEFAULT VALUES

C FOR IPAR(1,2,4,8,9)=0. THAT IS:

C VARIABLE STEP SIZE, FROM T0 TO TE, DEFAULT ICS ON Y0,

C METHOD IS PROJECTION/DP5, AND

C APPROXIMATE EXPONENTS BY NU-INTEGRATION

T0 = 0.0D0

TE = 1.0D+1

CCCCCCC IT IS VERY FIRST CALL

IPAR(3) = 1

CCCCCCC FWORK DIMENSION

IPAR(5)=IFDIM

C USE ERROR CONTROL ON LEs AND ON Q

IPAR(10)=10

C ERROR TOLERANCES

DO 2 I=1,N

TOLL(I) = 1.D-8

2 CONTINUE

TOLQ=1.D-8

C INITIALIZE CODE THE VERY FIRST TIME

CALL INIT(M,N,IPAR,T0,TE,DT,TOLQ,TOLL,FWORK,IFLAG)

IF (IFLAG.NE.0) THEN

PRINT *, ’IFLAG = ’, IFLAG

STOP

END IF

C INTEGRATE FROM T0 TO TE RETURNING OUTPUT EVERY 10 UNITS

20 CONTINUE

C CALL MAIN ROUTINE

CALL LESLIS(GETA,M,N,APPLES,T0,TE,DT,

* Y0,TOLQ,TOLL,IPAR,FWORK,IFLAG,INARR,REARR)

IF (IFLAG.NE.0) THEN

PRINT *, ’IFLAG = ’, IFLAG
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PRINT*, ’ CURRENT T = ’, T0,’ LYAP-EXPS ARE ’

WRITE(*,25) (APPLES(I),I=1,N)

STOP

ENDIF

PRINT *, ’AT T= ’,T0,’ LYAP-EXPS ARE ’

WRITE(*,25) (APPLES(I),I=1,N)

25 FORMAT (2X,4(E16.8,2X))

PRINT *

IF (T0.LT.100.0D0) THEN

TE=TE+10.D0

GOTO 20

ENDIF

ACC=0.0D0

DO 26 I=1,N

26 ACC=ACC+APPLES(I)

PRINT*, ’ SUM OF THE LES IS ’,ACC

PRINT *

C PRINT SOME STATISTICS

PRINT *, ’STEPS REJECTED = ’, IPAR(12)

PRINT *, ’NUMBER OF STEPS = ’, IPAR(13)

STOP

END

C ... and this is the sample GETA ....

SUBROUTINE GETA(M,T,AMAT,INARR,REARR)

INTEGER M, INARR(*)

DOUBLE PRECISION T, REARR(*), AMAT(M,M)

CCCCCCC PROBLEM MARCUS-YAMABE (N=2)

AMAT(1,1) = -1.D0+1.5D0*DCOS(T)*DCOS(T)

AMAT(2,2) = -1.D0+1.5D0*DSIN(T)*DSIN(T)

AMAT(1,2) = 1.D0-1.5D0*DSIN(T)*DCOS(T)

AMAT(2,1) = -1.D0-1.5D0*DSIN(T)*DCOS(T)

RETURN

END

7.2.2 Driver for LESLIL

The driver for LESLIL is essentially identical to the one above with the call to LESLIL replacing
that to LESLIS and the following routine GETAV replacing GETA.

C ... and this is the sample GETAV ....

SUBROUTINE GETAV(M,T,V,VDOT,INARR,REARR)

INTEGER M, INARR(*)

DOUBLE PRECISION T, V(M), VDOT(M), REARR(*)

CCCCCCC PROBLEM MARCUS-YAMABE (N=2)

VDOT(1) = (-1.D0+1.5D0*DCOS(T)*DCOS(T))*V(1)+

1 (1.D0-1.5D0*DSIN(T)*DCOS(T))*V(2)
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VDOT(2) = (-1.D0-1.5D0*DSIN(T)*DCOS(T))*V(1)+

1 (-1.D0+1.5D0*DSIN(T)*DSIN(T))*V(2)

RETURN

END
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