Math 2406 Final Exam, 2009

April 30, 2009

1. Define the following terms.
a. Orthonormal basis.
b. Minimal polynomial for a linear transformation.
c. Multilinear mapping.
d. Axioms of an inner product.
e. Eigenspace.
2. Suppose that A and B are subspaces of a finite-dimensional vector space V. Prove that

$$
\operatorname{dim}(A)+\operatorname{dim}(B)=\operatorname{dim}(A+B)
$$

if and only if

$$
A \cap B=\{0\}
$$

(that is, A and B have only the 0 element in common.)
3. Suppose that $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, n \geq 2$, is a linear transformation. Show that the linear transformations $1, T, T^{2}, T^{3}, \ldots$ do not span $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$. (The mapping 1 is the identity map - i.e. $1(x)=x$; and, the mappings T^{j} denotes the j-fold composition of T with itself. Hint: Can you give an upper bound on the dimension of the space spanned by these powers of T ?)
4. Show that the set of $n \times n$ Hermitian matrices forms a subspace of all $n \times n$ matrices, where we take the field of scalars (coefficient space) to be \mathbb{R} (even though the entries of these matrices are in \mathbb{C}). If the field of scalars (coefficients) is \mathbb{C} instead, would we still get that Hermitian matrices form a subspace?
5. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are non-zero real numbers. Let

$$
A:=\left[\begin{array}{ccccccc}
a_{1} & 0 & 0 & 0 & \cdots & 0 & b_{1} \\
0 & a_{2} & 0 & 0 & \cdots & 0 & b_{2} \\
0 & 0 & a_{3} & 0 & \cdots & 0 & b_{3} \\
\vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\
c_{1} & c_{2} & c_{3} & c_{4} & \cdots & c_{n-1} & a_{n}
\end{array}\right]
$$

where $a_{n}=b_{n}=c_{n}$. Write down a compact expression for the determinant and prove your answer (don't give me some baloney like one of the formulas you know for the determinant - find the determinant in a better way!).
6. Find an orthogonal basis that spans the same space as the vectors

$$
(1,2,3,4),(1,-1,0,0),(1,2,0,-7)
$$

7. Consider the following system of equations

$$
\begin{aligned}
4 x+2 y+z+w & =3 \\
2 x+w & =4 \\
8 x+4 y+2 z+3 w & =9
\end{aligned}
$$

Express the solution set to this system as

$$
v_{0}+t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{k} v_{k},
$$

where v_{0} is a particular solution and t_{1}, t_{2}, \ldots are free variables, and v_{1}, v_{2}, \ldots belong to the kernel of a certain matrix.
8. Consider the matrix

$$
A:=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] .
$$

Find matrices M and Λ, where Λ is diagonal, such that

$$
A=M \Lambda M^{-1}
$$

9. Compute the determinant of the following matrix

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -1 & 1 & 1 \\
1 & 0 & 2 & -1 \\
1 & 1 & -3 & 4
\end{array}\right]
$$

10. The following matrix consists of a single 3×3 Jordan block:

$$
\left[\begin{array}{ccc}
0 & -3 & -2 \\
1 & 3 & 1 \\
1 & 2 & 3
\end{array}\right]
$$

Thinking of this matrix as a transformation $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$, find a basis B for \mathbb{C}^{3} so that the matrix for T with respect to B (B is used for both the source and destination space) has the form

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

