Math 2406, Midterm 1 Solutions, Spring 2009

February 24, 2009

1.

First, it is obvious that if T is the identity map, then the set V under \oplus and the usual scalar multiplication, forms a vector space, since in this case \oplus is the same as + , and we already know V is a vector space under + .

Conversely, suppose that T is not the identity map. Then, there exists $v \in V$ such that $T(v) \neq v$. So, by properties of vector spaces, if the set V with \oplus and scalar multiplication forms a vector space,

$$
2 v=(1+1) v=1 v \oplus 1 v=v \oplus v=T(v+v)=2 T(v) \neq 2 v
$$

contradiction.
One can also try to prove this last claim a little differently by making use of O : if $T(v) \neq v$, then

$$
v=v \oplus 0=T(v+0)=T(v)
$$

contradiction. But, there is one little problem with this that needs to be ironed out: one needs to prove that the 0 in V using + is the same 0 in V using \oplus (it need not be the case that the additive identity in one context is the same in another). This can be proved by letting O_{2} denote the 0 in the set V with the operation \oplus. Then, assuming that this is a vector space, by properties of vector spaces we have

$$
0_{2}=v \oplus(-1 v)=T(v+(-1 v))=T(0)=0
$$

So, the 0 's are the same, and we are done.
2. The claim is clearly true for the base case $n=1$. Assume, for proof by induction, that

$$
T(n) \leq n \log _{2}(n)
$$

holds for all $1 \leq n \leq k$. Then, since $1 \leq(k+1) / 2<k+1$, we have

$$
\begin{aligned}
T(k+1) & =2 T(\lfloor(k+1) / 2\rfloor)+(k+1) \\
& \leq 2\lfloor(k+1) / 2\rfloor \log _{2}(\lfloor(k+1) / 2\rfloor)+(k+1) \\
& \leq(k+1) \log _{2}((k+1) / 2)+(k+1) \\
& =(k+1) \log _{2}((k+1) / 2)+(k+1) \log _{2}(2) \\
& =(k+1) \log _{2}(k+1),
\end{aligned}
$$

by properties of logs (specifically, $\left.\log _{2}(a b)=\log _{2}(a)+\log _{2}(b)\right)$. So, the induction step is proved, and we are done.
3. First, write

$$
L_{1}:=\{P+t A: t \in \mathbb{R}\}, L_{2}:=\{Q+u B: u \in \mathbb{R}\}, \text { where } A, B \neq \overrightarrow{0}
$$

Then,

$$
L_{1}+L_{2}=\{(P+Q)+t A+u B: t, u \in \mathbb{R}\}
$$

By the definition, this is a plane if and only if A and B are independent. And again by definition, we know that L_{1} and L_{2} are parallel if and only if A and B are dependent; and, taking the contrapositive, we have A and B are independent if and only if L_{1} and L_{2} are not parallel. Q.E.D.
4. You can look these up. So, I will not bother to define the terms.
5. The Gram-Schmidt vectors are

$$
(1,1,0,1),(1 / 3,-2 / 3,2,1 / 3),(-5 / 14,14,-2 / 7,-1 / 7,9 / 14) .
$$

