Midterm I, Abstract Vector Spaces, Fall 2006

February 6, 2009

1. We have seen that the set of all functions that are differentiable on \mathbb{R} form a vector space V. Now consider all such functions $f(x)$, differentiable on \mathbb{R}, which satisfy

$$
f^{\prime}(0)+f(0)=0 .
$$

Show that the set of all such functions $f(x)$ is a subspace of V.
2. Suppose that x and y are two independent vectors in some vector space V equipped with an inner product. Further, suppose that e_{1} and e_{2} are two vectors satisfying

$$
\begin{aligned}
x & =\left(x, e_{1}\right) e_{1}+\left(x, e_{2}\right) e_{2} ; \text { and }, \\
y & =\left(y, e_{1}\right) e_{1}+\left(y, e_{2}\right) e_{2} .
\end{aligned}
$$

a. Show that this implies that every vector $v \in V$ satisfies

$$
v=\left(v, e_{1}\right) e_{1}+\left(v, e_{2}\right) e_{2}
$$

(Hint: Express v as a linear combination of x and y. Why does such a linear combination always exist?)
b. Show that e_{1} and e_{2} are orthonormal. (Hint: First, show they have length 1 by picking just the right vectors v in part a.)
3. Apply Gram-Schmidt to the vectors

$$
v_{1}=(1,0,1), v_{2}=(1,1,1), v_{3}=(1,-1,3)
$$

and write down the orthogonal vectors that result.
4. Verify that the following three vectors are orthogonal:

$$
(1,2,3),(1,-2,1),(4,1,-2)
$$

Then, express the vector

$$
x=(3,-4,2)
$$

as a linear combination

$$
x=c_{1}(1,2,3)+c_{2}(1,-2,1)+c_{3}(4,1,-2)
$$

that is, find c_{1}, c_{2}, c_{3}.
5. Find a Cartesian equation for the plane through $(1,1,1)$ if a normal vector N makes angles $\pi / 3, \pi / 4$, and $\pi / 3$ with the vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$, respectively.

