Final Exam, Math 2406

April 29, 2009

1. Consider the plane of all points $z \in \mathbb{R}^3$ parameterized by

$$z = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + t \begin{bmatrix} 1\\2\\3 \end{bmatrix} + u \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \ t, u \in \mathbb{R}.$$

Find numbers a,b,c,d so that this plane is the set of all points $(x,y,z)\in \mathbb{R}^3$ satisfying

$$ax + by + cz = d.$$

2. Let V be the vector space of all continuous function f defined on [0, 1]. Let S be the subset of these functions f such that

$$\int_0^1 f(x)dx = \int_0^1 x f(x)dx.$$

Prove that S is a subspace.

3. Consider the subspace spanned by the vectors

$$v_1 = \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\0\\-3\\2 \end{bmatrix}, v_3 = \begin{bmatrix} 4\\0\\-2\\-3 \end{bmatrix}.$$

Find an orthogonal basis that spans the same space.

4. Compute the rank and nullity of the following matrix

5. Find a one-to-one parameterization of the set of solutions to the following system of equations:

$$2x + y + z - w = 3x - y - z - w = -4x + y + 5z + 2w = 3.$$

That is, find vectors $v_0, v_1, ..., v_k$ so that each solution can be written uniquely as $v_0 + t_1v_1 + \cdots + t_kv_k$, where the t_i are real numbers.

6. Consider the subspace $S \subseteq \mathbb{R}^4$ spanned by the vectors

$$v_1 = \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}.$$

Let

$$v = \begin{bmatrix} 1\\ -1\\ -1\\ 3 \end{bmatrix}.$$

Find the projection of v onto S; that is, find coefficients a and b so that this projection is $av_1 + bv_2$.

7. Suppose that A is an $m \times n$ matrix, and that B is an $n \times p$ matrix. Prove that the rank of the product AB is at most equal to the rank of B. (Hint: First, explain why the kernel of B is contained in the kernel of AB. Then, explain why the nullity of B is at most the nullity of AB. Finally, find a way to use the rank-nullity formula to then solve the problem...)

8. Find the eigenvalues and eigenvectors of the matrix

$$\left[\begin{array}{rrr}1 & 4\\1 & 1\end{array}\right].$$

9. Let V be the vector space of all 2×2 matrices. Note that V is fourdimensional. Consider the mapping $T: V \to V$ which sends a matrix A to its transpose A^t .

a. Prove that T is a linear transformation.

b. Show that $\lambda = 1$ and $\lambda = -1$ are its only eigenvalues (Hint: Don't compute det $(C - \lambda I)$! Instead, write down what an eigenvalue is in terms of a general linear transformation $T: V \to V$, and then solve for λ that way. This is an easy problem if you know how to set it up properly!)

c. Find an eigenvector associated to $\lambda = 1$, and then find an eigenvector associated to $\lambda = -1$. (Again, this is easy if you set it up properly! Note that in this problem eigenvectors are 2×2 matrices.)

10. Consider the second-order differential equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0,$$

subject to the initial conditions y(0) = 1, y'(0) = 1. Find y(x) using the method of matrix exponentials.

11. Consider the following matrix

2	1	0	0	1
0	2	0	0	
0	-4	1	1	·
0	-4	-1	3	

It turns out that this matrix has only the eigenvalue $\lambda = 2$. Given this, find the Jordan block matrix occuring in the Jordan Canonical Form; that is, we know that this matrix can be written as $V^{-1}JV$, where J is the Jordan block matrix – the problem is to find this matrix J.