Final Exam, Math 2406

April 29, 2009

1. Consider the plane of all points $z \in \mathbb{R}^{3}$ parameterized by

$$
z=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+u\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], t, u \in \mathbb{R}
$$

Find numbers a, b, c, d so that this plane is the set of all points $(x, y, z) \in$ \mathbb{R}^{3} satisfying

$$
a x+b y+c z=d .
$$

2. Let V be the vector space of all continuous function f defined on $[0,1]$. Let S be the subset of these functions f such that

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} x f(x) d x
$$

Prove that S is a subspace.
3. Consider the subspace spanned by the vectors

$$
v_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-3 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{c}
4 \\
0 \\
-2 \\
-3
\end{array}\right] .
$$

Find an orthogonal basis that spans the same space.
4. Compute the rank and nullity of the following matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & -1 \\
1 & -1 & -1 & -1 \\
1 & 1 & 5 & 2
\end{array}\right]
$$

5. Find a one-to-one parameterization of the set of solutions to the following system of equations:

$$
\begin{aligned}
2 x+y+z-w & =3 \\
x-y-z-w & =-4 \\
x+y+5 z+2 w & =3 .
\end{aligned}
$$

That is, find vectors $v_{0}, v_{1}, \ldots, v_{k}$ so that each solution can be written uniquely as $v_{0}+t_{1} v_{1}+\cdots+t_{k} v_{k}$, where the t_{i} are real numbers.
6. Consider the subspace $S \subseteq \mathbb{R}^{4}$ spanned by the vectors

$$
v_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let

$$
v=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
3
\end{array}\right]
$$

Find the projection of v onto S; that is, find coefficients a and b so that this projection is $a v_{1}+b v_{2}$.
7. Suppose that A is an $m \times n$ matrix, and that B is an $n \times p$ matrix. Prove that the rank of the product $A B$ is at most equal to the rank of B. (Hint: First, explain why the kernel of B is contained in the kernel of $A B$. Then, explain why the nullity of B is at most the nullity of $A B$. Finally, find a way to use the rank-nullity formula to then solve the problem...)
8. Find the eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right] .
$$

9. Let V be the vector space of all 2×2 matrices. Note that V is fourdimensional. Consider the mapping $T: V \rightarrow V$ which sends a matrix A to its transpose A^{t}.
a. Prove that T is a linear transformation.
b. Show that $\lambda=1$ and $\lambda=-1$ are its only eigenvalues (Hint: Don't compute $\operatorname{det}(C-\lambda I)$! Instead, write down what an eigenvalue is in terms of a general linear transformation $T: V \rightarrow V$, and then solve for λ that way. This is an easy problem if you know how to set it up properly!)
c. Find an eigenvector associated to $\lambda=1$, and then find an eigenvector associated to $\lambda=-1$. (Again, this is easy if you set it up properly! Note that in this problem eigenvectors are 2×2 matrices.)
10. Consider the second-order differential equation

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0
$$

subject to the initial conditions $y(0)=1, y^{\prime}(0)=1$. Find $y(x)$ using the method of matrix exponentials.
11. Consider the following matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & -4 & 1 & 1 \\
0 & -4 & -1 & 3
\end{array}\right]
$$

It turns out that this matrix has only the eigenvalue $\lambda=2$. Given this, find the Jordan block matrix occuring in the Jordan Canonical Form; that is, we know that this matrix can be written as $V^{-1} J V$, where J is the Jordan block matrix - the problem is to find this matrix J.

