Linear Algebra, Midterm 2

April 5, 2009

1. Suppose that V is a subspace of \mathbb{R}^{4} generated by the three vectors $(1,1,-1,1),(4,-1,-2,3)$ and $(4,-7,0,-1)$. Using the Gram-Schmidt process find three orthogonal vectors that span V.
2. Find the determinant of the following matrix:

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
2 & 6 & 1 & 6 \\
3 & 6 & 6 & 1 \\
4 & 8 & 7 & 3
\end{array}\right] .
$$

3. There does not exist a vector $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{t}$ such that

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] .
$$

However, one can find a "closest" vector x (or "least squares" vector) by projecting the vector $\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{t}$ onto the column space of the 3×2 matrix on the left-hand-side. Find this projection, and find the corresponding x_{1} and x_{2} which gives the "closest" vector.
4. Find the eigenvalues and eigenvectors of the following matrix:

$$
A=\left[\begin{array}{cc}
-7 & 2 \\
-15 & 4
\end{array}\right] .
$$

Then, find a matrix S and a diagonal matrix Λ, such that

$$
A=S \Lambda S^{-1}
$$

5. Give an example of a 2×2 matrix A such that
a. $A^{8}=I$, but $A^{1}, A^{2}, \ldots, A^{7} \neq I$.
b. The matrix A is singular, while the sum of its eigenvalues $\lambda_{1}+\lambda_{2}=4$.
