Math 3215, Homework 5, Fall 2011

October 31, 2011

1. Let the joint pdf of X and Y be

$$f(x,y) = 1/4, (x,y) \in S = \{(0,0), (1,1), (1,-1), (2,0)\}.$$

- a. Are X and Y independent?
- b. Calculate Cov(X,Y) and find ρ .
- 2. Let W equal the weight of laundry soap in a 1-kilogram box that is distributed in Southeast Asia. Suppose that P(W < 1) = 0.2 and P(W > 1.072) = 0.08. Call a box of soap light, good, or heavy depending on whether $\{W < 1\}$, $\{1 \le W \le 1.072\}$, or $\{W > 1.072\}$, respectively. In n = 50 independent observations of these boxes, let X equal the total number of light boxes and Y the number of good boxes.
 - a. What is the jpdf of X and Y?
 - b. Give the name of the distribution of Y along with the values of the parameters of this distribution.
 - c. Given that X=3, how is Y distributed conditionally (i.e., find g(y|x=3), the conditional pdf).
 - d. Determine E(Y|X=3).
 - e. Find ρ , the correlation coefficient of X and Y.
- 3. Prove that if X and Y are Poisson random variables, having parameters $\lambda_1 > 0$ and $\lambda_2 > 0$, respectively, then the random variable Z = X + Y is Poisson with parameter $\lambda_1 + \lambda_2$.

- 4. If X is an N(650,625) random variable (normal with mean 650 and variance 625), find
 - a. $P(600 \le X < 660)$.
 - b. A constant c > 0 such that $P(|X 650| \le c) = 0.9544$.
- 5. Let $Y = X_1 + \cdots + X_{15}$ be the sum of a random sample of size 15 from the distribution whose pdf if $f(x) = (3/2)x^2$, -1 < x < 1. Using the Central Limit Theorem, approximate

$$P(-0.3 \le Y \le 1.5).$$

6. Suppose that $Z = (X_1^2 + X_2^2 + X_3^2)^{1/2}$, where the X_i 's are independent N(0,1) random variables. Determine $P(Z \ge 2)$.