A Class of Random Algorithms for Inventory
Cycle Offsetting

Ernest Croot
Department of Mathematics
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.
ecroot@math.gatech.edu

Kai Huang
School of Management
Binghamton University, State University of New York
PO Box 6000, Binghamton, New York 13902-6000, U.S.A.
huang@binghamton.edu

August 28, 2008

Abstract

The inventory cycle offsetting problem (ICP) is a strongly NP-
complete problem. We study this problem from the view of probability
theory, and rigorously analyze the performance of a specific random
algorithm for this problem; furthermore, we present a “local search”
algorithm, and a modified local search, which give much better results
(the modified local search gives better results than plain local search),
and leads to good solutions to certain practical instances of ICP, as
we demonstrate with some numerical data. The regime where the
random algorithm is rigorously proved to work is when the number of
items is large, while the time horizon and unit volumes are not too
large. Under such natural hypotheses, the Law of Large Numbers,
and various quantitative refinements (such as Bernstein’s inequality)

come into play, and we use these results to show that there always
exist good solutions, not merely that good solutions holds with high
probability.

1 Introduction

In a multi-item inventory system, the basic problem is the timing and quan-
tity of replenishment orders. Suppose all items have constant demand rates,
and the inventory cycles are given. The decision of cycle offsets is known as
the Inventory Cycle Offsetting Problem (ICP).

Let k be the index for items, where k € {1,---, K'}. The inventory cycle
of item k is g. Within a base cycle framework (c.f., Murphy et al. (2003)),
we assume ¢;’s are natural numbers greater than 1. The volume of resource
consumed or occupied by one unit item £ in unit time is dj. They are also
called ”unit volumes”. The integer decision variable is 0 < 6 < g, the
replenishment time for item k. We define the following periodic function for
each item k:

fet) =q.—t VYOt <q. (1)

For all integers t, let h be the unique integer such that 0 < ¢+ hg, < ¢ and
fu(t) = fi(t + hay).

The ICP problem is to efficiently determine

Mr(qi, ..., qx;dy, ..., di) = 61%\2/17.1?% Oi\t/[g}fl S(t;01, ..., 0k),
teZ
where S(t;01,...,0x) = S.p_, difu(t + 01), and to determine a choice for
01, ...,0x where this Minimum-Maximum is attained. In the literature, the
ICP problem is also called the staggering problem (c.f., Gallego et al. (1992),
Gallego et al. (1996)).

The significance of this problem comes from two aspects. First, in many
multi-item inventory systems, there exists a resource constraint, which re-
quires that the resource occupied at any time along a finite or infinite time
horizon does not exceed a given capacity. Such a resource can be the maxi-
mum money tied up in the inventory (c.f., Rosenblatt (1981)), or the max-
imum available warehouse space (c.f., Gallego et al. (1996)). In a labor

intensive environment, e.g., retailer stores, labor could also be a stringent re-
source (c.f., Erhun and Tayur (2003), van Donselaar et al. (2006)). Second,

2

the ICP problem is a very hard integer program inherent in a larger global
optimization problem, which is of theoretical interests to researchers in this
field (c.f., Gallego et al. (1992), Gallego et al. (1996), Hariga and Jackson
(1996)).

In the following, we give a literature review in Section 2. In Section 3,
we present a Law of Large Numbers for the ICP problem, which is based on
the Bernstein concentration of measure inequality. In Section 4, we propose
a random algorithm and an improved version based on local search. The
numerical experiment results in Section 5 show that our algorithms are ef-
fective for many practical inventory systems. Finally, we conclude the paper
and discuss future research directions in Section 6.

2 Literature review

The inventory replenishment policy for a multi-item inventory system is a
fundamental topic in the inventory theory (c.f., Hadley and Whitin (1963),
Johnson and Montgomery (1974), Naddor (1966), Tersine (1976), Zipkin
(2000)). There are two types of decisions in inventory replenishment. One is
the quantity of replenishment, which is determined by the cycle length; the
other is the timing of replenishment, which is determined by the cycle offset
(0x’s). The ICP problem tries to answer the latter question, and is a sub
problem in a larger global optimization problem.

When there exists a single global resource constraint in a multi-item in-
ventory system, there are usually two approaches. One is the Lagrangian
relaxation approach (c.f., Hadley and Whitin (1963), Parsons (1966), John-
son and Montgomery (1974)), where Lagrangian multipliers are used and the
global optimization problem is decomposed into single item problems. The
other is the equal cycle length approach (c.f., Krone (1964), Parsons (1965),
Homer (1966), Page and Paul (1976), Zoller (1977), Goyal (1978)), where
all the items share the same cycle, and the decisions are to choose the equal
cycle length and the replenishment times for items.

In the 1990s, the advantages of joint replenishment receive intensive study
(c.f., Zipkin (2000)). When multiple items are replenished simultaneously,
pooling effects will bring significant cost reduction. In joint replenishment
policy, usually a base cycle is determined, and the cycle of any item is an
integer multiple of the base cycle. So this approach is also called the base
cycle approach (c.f., Goyal (1973), Silver (1976), Goyal and Belton (1979),

Kapsi and Rosenblatt (1983)). It can be shown when the base cycle length
is given, the problem of determining the integer multiples can be regarded
as a partitioning problem and solved efficiently in most practical cases (c.f.,
Chakravarty et al. (1982), Chakravarty et al. (1985)). In Gallego et al. (1996),
a variant of the base cycle approach is proposed, where the cycle lengths of
items are set to be power of two times of the base cycle length. In Hariga
and Jackson (1996), a similar method is discussed.

However, in most base cycle approach papers, there is very little discus-
sion on the cycle offsetting problem; it is usually assumed that there exists
times along the horizon, such that the overall resource occupied is just the
sum of the maximum resource occupations of individual items. This may
be due to the difficulty of solving the cycle offsetting problem as a subprob-
lem. In Gallego et al. (1992), it is shown that the cycle offsetting problem is
strongly NP-complete. In Goyal (1978), a heuristic is proposed to incorpo-
rate the cycle offsetting within a fixed cycle approach. Then in Hall (1988),
the author considers the separate replenishment policy for two items, where
the cycle length of one item is defined as the basic cycle, and the other item’s
cycle length is an integer multiple of the basic cycle. The optimal offsetting
solution for this special case is derived. The two item case is also studied in
Hartley and Thomas (1982), Thomas and Hartley (1983). In Shaw (1990),
the case of no more than three replenishment in each cycle is studied. It
is shown that for this special case, the ICP problem can be transformed
to the knapsack problem, and a pseudo polynomial algorithm can be used.
Later in Murphy et al. (2003), the general two item cycle offsetting problem
is solved. By using modular arithmetic, a closed form optimal solution is
obtained. Furthermore, the authors show that cycle offsetting can increase
resource utilization by as much as fifty percent, which implies that it is very
necessary to consider the cycle offsetting effect when the resource is limited.

To conclude, in previous research on the inventory cycle offsetting prob-
lem, the two item case was solved, while for the case of larger number of
items, only a few heuristics exist.

3 Law of Large Numbers for ICP

Our first observation of ICP is the following theoretical lower bound, whose
proof can be found in Croot and Huang (2007).

Theorem 1
ML(ql, 4K, dl, ceey dK) Z B,
where
di(gn + 1)+ +dr(gr +1)
2 Y
and L is the least common multiple (LCM) of the q’s.

B =

On the other hand, it is trivial to see that the upper bound of the ICP
problem is:

diqy + -+ drqk.

In this section we consider a large number of items, in which case the Law
of Large Numbers will come into play. We can show that the existence of a
“good” solution can be guaranteed when the distributions of the cycles (the
qr’s) and unit volumes (the di’s) of items satisfy certain conditions, where
a “good” solution is a solution providing a total capacity requirement close
enough to the theoretical lower bound.

3.1 Statistics

We take the view that the parameters ¢,’s and d;’s are taken from random
distributions. Therefore, the following equations can be regarded as defini-
tions of a series of statistics. The theorems in this section will be stated using
these statistics.

L = LCM(QI? 7QK>
U = 11;/%%}%{ dp(qr — 1)
 di(g+ 1)+ -+ di(gr + 1)
M1 =
K
o Sildk(e+1) —)
! K
)\1 = 2
M1
)\2 = g
M1
1 K
2 2
g - 19 ;dk(% —1)

Kp
5

Notice that now B can be written as B =

3.2 Applications of Bernstein’s inequality

In this subsection we will use Bernstein’s inequality (Theorem 2) to show that
in the case of large number of items, if we pick d1,...,0x at random, then
S(t; 01, ..., d) is not too large for lots of times t. We first list the Bernstein’s
inequality without proof:

Theorem 2 (Bernstein’s Inequality) Let X1, ..., X,, be independent ran-
dom wvariables with EX; = 0, E(X?) = 02, and suppose that | X;| < c. Write
o? = U%—i—d%—l—----}—di,

then for any t > 0 we have the inequality:

n

2t2
P(Xi+ -+ X, >nt) < S
(Xt nt) < eXp(202+2ct/3)

Now we consider the following: Suppose we fix a time ¢, and choose
01, ..., 0k independently at random, where

514: - {0, 1, e g — 1}7

with the uniform distribution. How close to B would we expect S(t; dy, ..., 0k)
to come? To answer this question, first let

Xy = dipfi(t +0x) — dkE(fe(t +61) = dife(t +65) — w7 (2)
which satisfies

Then let
S = X1++XK

We have E(S) = 0. Since all X}’s are independently chosen,

o = V() = YVX) = = S dla).

6

Now, we can take for the parameter ¢ in the statement of Bernstein’s in-
equality,

U _
2 k 2

and so, we obtain from Bernstein’s inequality
K2t2
P(S > Kt) < exp(—) . (3)

With this inequality, we can derive the following theorem:

Theorem 3 For any fized t > 0, if we choose 6 ’s independently at random
from uniform distributions, then we have

3K G
[S(t; 01, +,0x) > (1 +a)B] < eXp< 2 u%+a’f’+au1U/K) W

Proof: We have from (3) that

P(S(t;61,...0x) > (1+a)B) = P(S >aB) = P[S > K(aB/K)].

Letting t = %, we deduce from (3), along with the easy-to-verify inequality
o2 < K(ui +a?)
T
that
a’B?
P[S(t;61,...,0) > (1+a)B] < exp <—202 n aUB/3K>

3Ka?u?
>~ e&Xp| —53 3 .

Remark. The first observation is that for any fixed ¢, if we choose appro-
priate U, u1, 01, K and «, and if the following inequality holds:

exp —% o1y <1
2 (2 +oi+anmU/K ’

then
P[S(t;01,--+,0k) < (1 +a)B] > ¢, for some ¢; > 0.

In other words, there exists a positive probability of finding a value for S
that is within (1 + «) times the lower bound B for the fixed ¢. Furthermore,
if we regard U, py, o1, T and « as fixed parameters, then the right hand side
of (4) is an exponentially decreasing function for any ¢ with respect to K.
Therefore, as long as K is large enough, we can always guarantee that there
is a “good” solution; more precisely,

0<t<T

P(B < Max S(t;01, -+, 0k) < (1+a)B) > 0.

The reason for the < here is that we only have < here when 7" = L (i.e., when
T < L, B may not be a lower bound); however, a result in Croot and Huang
(2007) shows that when T is “sufficiently large”, then B is still essentially a
lower bound for Maxo<;<1 S(t; 1, ..., 0).

From the remark, we have the following immediate corollary of Theorem
3:

Corollary 1 Let

Suppose that
3K a?

2 14+ A+ aN/K

Then, if we choose 0’s randomly from uniform distributions, we have a
strictly positive probability for the event

> logT. (5)

Max S(t;01,---,0k) < (14+«a)B, (6)

0<t<T

which implies that
Mr(q1, s qxc; dy oy die) < (L4) B.
Proof: Let event A; be the event

S(t;éla"'aéK) < (1"‘(1)3,

then the event
Max S(t;d1,---,0x) < (14+«)B

0<t<T

is the same as event N’ 4,. Using Theorem 3 and inequality (5), we have

T—1
P(NZ'A) = 1) P(A)
t=0
3K o2
> 1-T _ .
= o (2 17+ 07+ amU/K

The conclusion (6) clearly holds if this last quantity is positive, which is
equivalent to (5). |

Remark. One can make even stronger deductions from Theorem 3, but for
the purpose of this paper, Corollary 1 is good enough, as it gives a rough
idea of what is possible to prove. Corollary 1 shows that when we have a
large number of items, the Law of Large Numbers becomes effective, in which
case it is guaranteed that there exists “good” solutions as long as the ratios
A1 and)y are not too large.

4 Random algorithms

In this section, we present three random algorithms to find “good” solutions
in certain practical instances. Furthermore, we present an algorithm that
produces better lower bounds than just B for the resource requirement.

4.1 A simple random algorithm

Corollary 1 implies a simple randomized procedure to find a “good” solution
when K is large, where a “good” solution is one such that S(¢;0q,---,0x) <
(1+a)B forall 0 <t < T, given an « that is small enough. Assume inequal-
ity (5) holds, we just need to generate a random sample of dy,---,dx from
uniform distributions, then we test whether or not (6) holds. If this is true,
we claim that (01, -+, dk) is a good solution, otherwise we generate another
identically independently distributed sample. We present this randomized
procedure in Algorithm 1.

Algorithm 1 A simple random algorithm

1: Given qq,...,qx and dy,...,dg, select 0 < ¢, < ¢ — 1 at random using
uniform measures.

2: Test the solution dy, - -, dx. If it is true that S(¢;01,--+,0x) < (14+a)B
for all 0 < ¢t < T, then stop and return the solution. Otherwise go to
Step 1.

Remark. In each iteration of Algorithm 1, the complexity is O(T).

Note that the effectiveness of Algorithm 1 is guaranteed by the selection
of v according to inequality (5). The managerial intuition behind (5) is that
for similar values of U, u; and oy, the total inventory capacity is directly
related to the item number K and time horizon 7. When T is fixed, the
larger the item number K is, the smaller the value o can be. When K is
fixed, the smaller the time horizon T is, the smaller the value a can be. In
other words, when we have given U, u; and oy and «, the effectiveness of
the randomized procedure depends on the ratio between K and T'. When T'
is larger, we need a larger K for Corollary 1 to work; when 7' is smaller, we
only need a smaller K.

4.2 An improved random algorithm: Basic local search

We can easily improve the performance of the previous algorithm by per-
forming a series of “local searches”. One round of local search simply applies
the following procedure for a given index 1 < i < K:

Local Search (LS):

1. We assume that we have some values for 4y, ..., 0 to begin with.
2. Reset 9; as follows

51' — argminog(ggqi,l (}\S/{ti)%S(t, 517...,(52'_1,6, 5i+17-'-75K)~

Note: There may be multiple § that minimize the maximum S. We choose
here any ¢ producing such a minimum maximum.

This now leads us to an improved random algorithm, given as follows:

10

Algorithm 2 An improved random algorithm with basic local search

1: Given qq,...,qx and dy,...,dg, select 0 < ¢, < ¢ — 1 at random using
uniform measures.

2: For j from 1 to N do steps 3 and 4.

3: Select ¢ randomly from among the integers {1, ..., K'} using uniform mea-
sures.

4: Perform local search for this chosen value of 7.

Remark. In each iteration of Algorithm 2, the complexity is O(NQT),
where () is the largest g value, ie., 1 < ¢ < @ for all k. Note N is a
parameter to control the computation effort of the algorithm. In the following
experiments, we set N = 500.

4.3 An improvement to basic local search

Before we explain how to further improve local search, let us begin with the
following observation: Suppose we have two initial sets of values of the dy
for which we wish to apply local search. The first set of values of the d;’s
produces many times t in the window 0 <t < T" where S is “large”, while
the second set produces very few times t where S is “large”. Which set of
values of d;’s would probably be a better candidate to which to apply local
search?

It would seem that the second set would be better, and the reason is as
follows: Suppose one applies local search to the first set of d;’s, say changing
the value of §; so as to reduce the size of Maxg<;<r—1 S(t; 01, ...,dk). Since
this set of 9;’s leads to lots of times ¢ where S is large, by changing d; by
a little bit it is true that one can perhaps get S to be a little smaller at
one of the peak times, but one is just as likely to make S larger at another
peak time. So, one is more likely to get stuck in a “local minimum” where
local search does not much help. However, if there were fewer peaks of the
function S to begin with (as in the case of the second set of d;’s), then it
is more likely that changing d; to reduce the size of one peak value of S at
one particular time ¢, will not much increase the size of S at one of the other
peak value times. So, there is a greater chance of not getting stuck in a local
minimum.

How might we take advantage of this intuition? One way is to devise

11

and use a type of local search that first adjusts the d;’s to try to reduce the
number of peak values of the function S, and then to apply the local search
procedure from subsection 4.2 to the resulting set of d;’s.

One way to measure whether a choice of d;’s leads to many times t where
S is large (i.e., “many peaks”) is just to compute a certain L norm: For
c>1 we let

Fc(él,...,5k) = Z (Z dkfk(t+5k)> .

0<t<T \1<k<K

The larger the value of F., the more peaks that the function S enjoys.
This now leads us to the following:

L€ local search (LcLS):

1. Assume that ¢, i, dp, K =1, ..., K are given, let ¢ be an index where
for which to improve the value of ¢;, and finally let ¢ > 1 be a choice of
exponent.

2. Let 0 < § < ¢;—1 be chosen so as to minimize F.(dy, ..., 0;—1,9, 0i11, .-.0k)-

3. Reset 0; « 0.

Numerical evidence suggests that using ¢ = 4 gives good results. Let us
now state our modified local search algorithm.

Algorithm 3 An improved random algorithm with modified local search

1: Given ¢, ...,qx and d, ..., dg, select all the d1,...,0x at random using
uniform measures.

2: For j from 1 to N; do steps 3 and 4.

3: Select ¢ randomly from among the integers {1, ..., K'} using uniform mea-
sures.

4: Perform L* local search (LALS) for this chosen value of i.

5: For j from 1 to Ny do steps 6 and 7.

6: Select ¢ randomly from among the integers {1, ..., K'} using uniform mea-
sures.

7. Perform regular local serach (LS) for this chosen value of i.

Remark. In each iteration of Algorithm 3, the complexity is O(NQT),
where N = Ny + Ny, and Ny, Ny are parameters to control the computation

12

effort of the algorithm. In the following experiments, we set N; = 200 and
N, = 300. Like in Algorithm 2 in subsection 4.2, we run for N = 500
iterations in total; however, it turns out that this new algorithm usually has
better performance, as numerical studies in Section 5 will demonstrate.

4.3.1 An algorithm for better lower bound on the objective

Note that B is valid when T' = L. However, when T' # L, B could be an
approximate lower bound. Especially when T" < L, B can be very inaccurate.
Therefore, there is a need to develop some better lower bound.

We begin by defining the quantity

K 2
X, 3 (Sana)

k=1,..,K 0<t<T \k=1

Although we don’t know the value of this quantity, we can at least efficiently
compute a lower bound for it. Note that if we were to drop the “min”, and
expand the square, we would get

Do didy Y filt) fi(E+).

1<ij<K 0<t<T

Regardless of what values of 9, we choose, this is always bounded from below
by

> did Min D filt+6) £t +6)).

0<8;<a;—
1<i,j<K 0<6;<q;—1 0<t<T

A slightly more efficient way of computing this is to write it as

AO + A17
where
_ 2 , 2
Ao = Z d 0<<1$\1-/I<1£—1 Z filt +0:)°,
1<i<K 0<t<T
and

Ay =2) didy Min Y filt+0)f(t+0)).
1<i<j<K 0<8;<q;—1 0<t<T

So, we have that
X > Ag+ AL

13

Now we arrive at the following, almost trivial inequality that underlies
our algorithm for a better lower bound:

MT(QIJ'”?qK;dla”'7dK) 2 V <A0+Al>/T

Our algorithm for a lower bound for My is now given as follows:

Algorithm 4 An algorithm for better low bound on the objective

We are given ¢, ..., qi, dq, ...,dx and T

Set Apg := 0.0 and A; := 0.0.

For ¢ from 1 to K do steps 4 through 6.

Set AO — AO + dlz Minoggigqi_l ZO§t<T fz(t + 51)2

For j from 1 to ¢ — 1 do step 7.

Set Ay «— A; + 2% dld] Mingé;?gqi.71 ZO§t<T fl(t + 5Z)f] (t + (5])
S9jSq5—1

7. Return /(Ao + A1) /T.

Remark. The complexity to compute the better lower bound is O(K?Q*T).
In subsection 5.4 we present some data showing how well Algorithm 3 per-
forms, using the better lower bound produced by Algorithm 4.

5 Numerical Experiments

In this section, we first present the performances of Algorithm 1-3 separately.
Then we further compare the three algorithms. The results show that Al-
gorithm 3 has the best performance. We also use the better lower bound to
further verify the performance of Algorithm 3. Note that all the numerical
experiments are implemented in ANSI C.

5.1 Performance of the simple random algorithm

We first present some data on the effectiveness of the simple random algo-
rithm. For each value of K, Q) and T', we perform the following procedure 10
times, and we record the average value of the ratio Maxo<;<r S(t; 01, ..., 0k)/ B
for these 10 runs: We select K random integers 1 < ¢y, ..., qx < @ using the

14

uniform measure, then select unit volumes dy, ...,dyx € (0, 1] also using the
uniform measure (actually, the d; are rational numbers of the form x/1000,
where natural number = satisfies 1 < z < 1000), and finally select offsets
01, ..., 0 randomly as in Algorithm 1. The results are presented in Table 1.
From Table 1, we can see the law of large numbers does come into play
when the number of items K becomes large. When K > 300, Algorithm 1 is
able to generate offsets whose resource requirement is within 12 percent of the
minimum requirement. Furthermore, the impact of T" is obvious. Generally
speaking, the solution quality becomes better when T becomes smaller.

Table 1: Performance of Algorithm 1

K Q T Average Maxo<t<r S(t;01,...,0K)/B

300 500 1000 1.10526
100 500 1000 1.19750
300 500 2000 1.11819
100 500 2000 1.20675
50 100 1000 1.31076
50 100 2000 1.33550

5.2 Performance of the basic local search

Next, we present some data on the effectiveness of “basic local search” using
N = 500 iterations. Basically, for each choice of K, () and T" we perform
the 500 iterations of basic local search on 10 random data sets, by selecting
the ¢;’s, d;’s and ¢;’s at random using uniform measures. Then we compute
the average value of Maxg<i<r S(t; 01, ...,dx)/B for those 10 data sets. The
results are presented in Table 2.

From Table 2, we can see that Algorithm 2 performs much better than Al-
gorithm 1. And it is surprising how well the random algorithms can perform.
When K > 300, Algorithm 2 is able to generate offsets whose resource re-
quirement is within 4 percent of the minimum requirement. This means that
for a practical inventory system with many items, these random algorithms
can find near-optimal solutions.

15

Table 2: Performance of Algorithm 2

K Q T Average Maxo<t<r S(t;01,...,0K)/B

300 500 1000 1.02044
100 500 1000 1.04624
300 500 2000 1.03702
100 500 2000 1.07070
50 100 1000 1.16366
50 100 2000 1.19088

5.3 Performance of the modified local search

We perform the same experiment as in the previous subsection, except that
we use “modified local search” in place of “basic local search”. The results
are presented in Table 3. Note that in every single set of the experiment, for
each choice of K, @ and T, Algorithm 3 beats Algorithm 2 and Algorithm 1.

Table 3: Performance of Algorithm 3

K Q T Average Maxo<i<7 S(t;01,...,0K)/B

300 500 1000 1.01914
100 500 1000 1.03917
300 500 2000 1.03435
100 500 2000 1.05393
50 100 1000 1.11588
50 100 2000 1.15931

One way that we can further improve the random algorithms is to run
them multiple times on the same set of ¢, ..., g and 91, ..., 0, and then take
the best choice of 01, ..., 0 among all the different runs. This can be rather
computationally intensive, so we only carried out the computations for the
case K = 50, @ = 100 and T" = 2000. The exact procedure we use is given
as follows:

1. For i from 1 to 5 do steps 2 through 9
2. Generate a random values 1 < g1, ..., g5 < 100, 0 < dy, ..., d50 < 1.

16

3. For j from 1 to 10 do steps 4 through 7

4. Generate 01, ..., 059 at random.

5. Run “basic local search” on this set of values of d;’s, and record the
performance.

6. Generate new 01, ..., 059 at random.

7. Run “modified local search” on this set of values of d;’s, and record
the performance.

8. Among all the runs of 10 runs of “basic local search”, record the one
leading to the smallest resource requirement. Do the same for “modified local
search”.

9. Report the results.

The results for K = 50, () = 100, and T" = 2000 are presented in Table 4.
Note that in every single instance, the “modified local search” beats the
“basic local search”.

Table 4: Comparisons of best Maxo<¢<r S(t; 1, ...,0x)/B

i Algorithm 2 Algorithm 3
1 1.17667 1.15581
2 1.17401 1.14841
3 1.18944 1.17055
4 1.16541 1.14330
5 1.17849 1.16759

5.4 Modified local search compared against the better
lower bound

“Modified local search” performs better than was indicated in the last sub-

sections, because our baseline of comparison was the lower bound B on the

resource requirement. So we use the better lower bound as the baseline of

comparison, using K = 50, = 100 and 7" = 2000. In generating our data
below, we execute the following procedure five times:

1. Generate random 1 < ¢y, ...,q50 < 100 and 0 < dy, ...,d5 < 1.

17

Set b := oo.
For ¢ from 1 to 10 do steps 3 through 5.
Generate random 9y, ..., 059, where 0 < 9, < ¢ — 1.
Apply “modified local search” using the q;’s, di’s and d;’s.

5. If the capacity ¢ produced by “modified local search” is smaller than
b, then set b < c.

6. Run Algorithm 4 using ¢, ..., ¢so and dy, ..., d5o, and let B’ be the lower
bound on the resource requirement it produces.

7. Compute B :=), dip(qr +1)/2.

8. Report the ratios b/B and b/B'.

ol o S

Notice that we run “modified local search” ten times, and take the best
of those ten, as we did in subsection 5.3. The data that our procedure above
generates after five runs is presented in Table 5.

Table 5: Performance of Algorithm 3 based on better lower bound

b/B b/ B’
1.136444 1.117237
1.148475 1.134835
1.158067 1.140820
1.127392 1.114115
1.146271 1.132386

U W N =

The average of these ratios b/ B’ is roughly 1.12788. So, “modified local
search” for K = 50, = 100,T = 2000 is typically no worse than about
13% above the theoretical minimum when using the best of ten runs. It may
be the case that the performance of “modified local search” is in fact better
than this, as could be demonstrated with a better lower bound than B’ for
the theoretical minimum.

6 Conclusions

In this paper we studied the inventory cycle offsetting problem using proba-
bility theory and large deviation inequalities. We showed that when there are
a large number of items, “good” solutions exist and can be obtained by a ran-
dom algorithm, and even better solutions can be obtained by applying “basic

18

local search” and “modified local search”. The numerical experiment results

were especially interesting, as they indicated that “modified local search” can

obtain solutions that come rather close to the theoretically best-possible.
There are several future research directions that we will explore:

e First, the analysis in Section 3 shows the simple random algorithm is
asymptotically optimal. It would be good to be able to carry out a
similar analysis for “basic local search” and “modified local search”,
and to show that they can give much better solutions than the simple
random algorithm.

e Second, it would be good to have a better theoretical lower bound
on the best-possible resource requirement than that produced in Al-
gorithm 4. Perhaps there are better algorithms for this that require
only modest computing resources (certainly one can do “cubic” and
“quadratic” versions of our algorithm, but these require enormously
more computing resources than our algorithm).

e Third, the choice of parameters N, N1, Ny in “basic local search” and
“modified local search”, was rather ad hoc. It would be interesting to
work out, experimentally, what the best combination of uses of LcLS
and LS in “modified local search” are so as to typically produce the
smallest resource requirement.

e Fourth, it would be interesting to see whether one can devise random
algorithms as good as “modified local search”, that allow the demand
to vary with time (i.e., stochastic demand).

References

A K. Chakravarty, J.B. Orlin, and Rothblum U.G. A partition problem with
additive objective with an application to optimal inventory groupings for
joint replenishment. Operations Research, 30(5):1018-1022, 1982.

A K. Chakravarty, J.B. Orlin, and Rothblum U.G. Consecutive optimizers
for a partitioning problem with application to optimal inventory groupings
for join replenishment. Operations Research, 33(4):820-834, 1985.

E. Croot and K. Huang. Threshold results for the inventory cycle offsetting
problem. Submitted paper, 2007.

19

F. Erhun and S. Tayur. Enterprise-wide optimization of total landed cost at
a grocery retailer. Operations Research, 51(3), 2003.

G. Gallego, M. Queyranne, and D. Simchi-Levi. Single resource multi-item
inventory systems. Operations Research, 40:580-595, 1996.

G. Gallego, D. Shaw, and D. Simchi-Levi. The complexity of the stagger-
ing problem and other classical inventory problems. Operations Research
Letters, 12:47-52, 1992.

S.K. Goyal. Determination of economic packaging frequency for items jointly
replenished. Management Science, 20:232-235, 1973.

S.K. Goyal. A note on multi-product inventory situations with one restric-
tion. The Journal of the Operational Research Society, 29(3):269-271,
1978.

S.K. Goyal and A.S. Belton. On a simple method of determining order quan-
tities in joint replenishments under deterministic demand. Management
Science, 25:604, 1979.

J. Hadley and T.M. Whitin. Analysis of Inventory Systems. Prentice Hall,
Englewood Cliffs, N.J., 1963.

N.G. Hall. Separate vs. joint replenishement policies with maximum storage
requirement costs. Furopean Journal of Operational Research, 36:180-185,
1988.

M.A. Hariga and P.L. Jackson. The warehouse scheduling problem: formu-
lations and algorithms. IIE Transactions, 28:115-127, 1996.

R. Hartley and L.C. Thomas. The deterministic, two-product inventory sys-
tem with capacity constraint. Journal of Operational Research Society, 33:
1013-1020, 1982.

E.D. Homer. Space-limited aggregate inventory with phased deliveries. Jour-
nal of Industrial Engineering, 17:327-333, 1966.

L.A. Johnson and D.C. Montgomery. Operations Research in Production
Planning, Scheduling and Inventory Control. John Wiley, New York, 1974.

20

M. Kapsi and M.J. Rosenblatt. A improvement of silver’s algorithm for the
joint replenishment problem. [IE Transactions, 15:264-267, 1983.

L.H. Krone. A note on econocmic lot sizes for multi-purpose equipment.
Management Science, 10:461, 1964.

N.N. Murphy, W.C. Benton, and P.A. Rubin. Offsetting inventory cycles
of items sharing storage. Furopean Journal of Operational Research, 150:
304-319, 2003.

E. Naddor. Inventory Systems. John Wiley, New York, 1966.

E. Page and R.J. Paul. Multi-product inventory situations with one restric-
tion. Operational Research Quarterly, 27(4):815-834, 1976.

J.A. Parsons. A note on krone’s econocmic lot size formulas. Management
Science, 12:314, 1965.

J.A. Parsons. Multi-product lot size determination when certain constraints
are active. Journal of Industrial Engineering, 17:360-365, 1966.

M.J. Rosenblatt. Multi-item inventory system with budgetary constraint: a
comparison between the lagrangian and the fixed cycle approach. Interna-
tional Journal of Proudction Research, 19(4):331-339, 1981.

D. Shaw. Complexity and heuristics of a special case of warehouse capac-
ity restricted lot-scheduling problem. Working paper, Department of In-
dustrial Engineering and Operations Research, Columbia University, New
York, 1990.

E.A. Silver. A simple method of determining order quantities in joint re-
plenishments under deterministic demand. Management Science, 22:1351—
1361, 1976.

R.J. Tersine. Materials Management and Inventory Systems. North-Holland,
New York, 1976.

L.C. Thomas and R. Hartley. An algorithm for limited capacity inventory
problem with staggering. Journal of Operational Research Society, 34:
81-85, 1983.

21

K.H. van Donselaar, V. Gaur, T. van Woensel, R.A.C.M. Broekmeulen, and
F.C. Fransoo. An empirical study of ordering behavior of retail stores.
Submitted manuscript, 2006.

P.H. Zipkin. Foundations of Inventory Management. McGraw-Hill, 2000.

K. Zoller. Deterministic multi-item inventory systems with limited capacity.
Management Science, 24:451-455, 1977.

22

