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1 Two Birthdays the Same

It turns out that there is at least a 50% chance that in any random sample of
23 people, two of them will have the same birthday. By “birthday”, I mean
you don’t include the year; so, an example of a birthday would be “June 11”.

The reason that one uses the “paradox” to refer to this phenomenon is
that it seems counterintuitive that a random sample of so few people should
likely have a matching pair of birthdays. The reason that such a small
number of people suffices is that there are many pairs of individuals, and so
many chances for a collision of birthdays: Indeed, with 23 people, there are
(

23

2

)

= 253 pairs of individuals.
Let us now prove that the probability is indeed 50%. First, let the sample

space S be the set of all sequences (x1, ..., x23), where 1 ≤ xi ≤ 365. The
value of xi indicates the day of the year of the ith person’s birthday. We are
assuming here, for simplicity, that there are no leap years, so that each year
has exactly 365 days. Another assumption we will make is that each day of
the year is equally likely to be the birthday of a randomly selected person.
It turns out that if we don’t assume this, then the probability of a collision
is even greater (with 23 people). So, with this assumption, we will get that
any s ∈ S has probability P (s) = (365)−23. Note here that we are implicitly
assuming that Σ = 2S.

Now, let E2, ..., E23 be events defined as follows: Event Ei is the subset
of S where person i’s birthday is different from person j’s birthday for all
j = 1, 2, ..., i − 1. Then, the event in S where all 23 people have different

birthdays is easily seen to be E2 ∩E3 ∩ · · ·∩E23, and so we want to calculate
P = P (E2 ∩ E3 ∩ · · · ∩ E23). The probability that two persons will have the
same birthday will then be 1 − P .
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So, we just need to show that P < 0.5. If we knew that the Ei’s were
independent, then we could compute P = P (E2) · · ·P (E23), and then com-
puting the P (Ej)’s separately would give us P . However, these events are
not independent. Nonetheless, we may use the “chain rule” or “product rule”
(not to be confused with the chain rule or product rule from calculus) for
calculating the probability of events. This rule is given as follows:

Product Rule for Events.

P (A1∩A2∩· · ·∩Ak) = P (A2|A1)P (A3|A1∩A2) · · ·P (Ak|A1∩A2∩· · ·∩Ak−1).

In our case, we let A1 = E2,...,A22 = E23; and, for j = 2, ..., 23, we
have that P (Ej|E1 ∩ · · · ∩ Ej−1) is the probability that person j’s birthday
is distinct from person 1’s, person 2’s,..., and person (j − 1)’s, given that the
birthdays of persons 1 through (j − 1) are all distinct. This probability is
clearly (366 − j)/365. So, from the product rule we get

P (E2 ∩ · · · ∩ E23) =

23
∏

j=2

366 − j

365
=

22
∏

j=1

(

1 −
j

365

)

= 0.4927...

This is the probability that all the 23 birthdays are distinct; and so, the
probability that two people have a common birthday is 1 − 0.4927..., which
exceeds 50%.
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