Final Exam, Math 4107

April 28, 2008

NO CALCULATORS ARE ALLOWED FOR THIS EXAM!

Instructions. Work any 8 of the following 10 problems.

- 1. Find integers x and y such that
 - a. 76x + 47y = 1.
 - b. $68x \equiv 1 \pmod{109}$.
- 2.
- a. Determine the number of permutations of the set $X = \{A, B, C, D, E, F\}$.
- b. Let $Y = \{G, H, I, J, K, L\}$. Let $\varphi : X \to Y$ be given by

$$\varphi = \left(\begin{array}{cccc} A & B & C & D & E & F \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ G & H & I & J & K & L \end{array} \right).$$

Show that every bijection $\psi:X\to Y$ can be written as

$$\Psi = \theta \circ \varphi$$
, where $\theta \in S_Y$.

c. Determine the number of surjections

$$\psi : X \to Y$$
.

d. Determine the number of injections

$$\psi : X \to Y$$
.

3. Suppose that G is a group that acts on the set

$$S := \{1, 2, 3\}.$$

Suppose that there is at least one element of G that acts non-trivially on S (i.e. there is an element $g \in G$ that doesn't just map $1 \to 1$, $2 \to 2$ and $3 \to 3$). Show that if

$$|G| > 6$$
,

then G is non-simple. Justify all the steps in your proof.

4.

a. Consider the permutation

$$(1\ 2\ 3\ 4\ 5\ 6) \in S_{100}.$$

Explain why it cannot be written as a product of 3-cycles.

- b. Write it as a product of transpositions.
- c. Explain why (1 2 3 4 5) is conjugate to the product of cycles

$$(50\ 49)(49\ 51)(51\ 53)(53\ 48).$$

- d. Give an example of a pair of elements x and y belonging to a finite group, such that each has order 2, and yet their product has order 5.
- 5. Suppose that φ is a homomorphism from a finite group G to itself.
 - a. If $\varphi(x) = x^2$, show that G is abelian.
- b. Show that the set of elements $y \in G$ that commute with some fixed $x \in G$, form a subgroup of G.
- c. Show that if $\varphi(x) = x^2$ for more than 75% of the elements $x \in G$, then G is abelian. Hint: To prove this, first show that for every $x \in G$, more than |G|/2 of the $y \in G$ satisfy both

$$\varphi(y) = y^2 \text{ and } \varphi(xy) = (xy)^2.$$

Now think about what this means in light of part b (and Lagrange's theorem...).

- **6.** a. State the Sylow Theorems.
 - b. State the First Isomorphism Theorem for groups.
 - c. State Lagrange's Theorem.

- d. State Cayley's Theorem for groups.
- e. State the Orbit-Stabilizer Theorem.
- 7. Suppose that G is a group of order 33. Show that G is abelian. Justify every step, and quote all the relevant theorems you use.

8.

- a. Show that every finite Integral Domain is a field.
- b. Find an example of an infinite Integral Domain that is not a field.
- c. Show that if R is a ring containing a zero divisor, then R[x] does not have the unique factorization property (Hint: Cook up an example of a polynomial that factors in two different ways as a product of irreducibles.)
- **9.** Given a polynomial $f(x) \in \mathbb{Z}[x]$, we let $\overline{f}(x)$ be its image under the mod p homomorphism

$$\varphi : \mathbb{Z}[x] \longrightarrow (\mathbb{Z}/p\mathbb{Z})[x].$$

- a. Show that if f(x) is monic, and if $\overline{f}(x)$ is irreducible in $(\mathbb{Z}/p\mathbb{Z})[x]$, then f(x) is irreducible in $\mathbb{Z}[x]$.
- b. Give an example of a polynomial $f(x) \in \mathbb{Z}[x]$ such that $\overline{f}(x)$ is irreducible in $(\mathbb{Z}/3\mathbb{Z})[x]$, and yet f(x) is reducible in $\mathbb{Z}[x]$.

10.

- a. Show that if α is a prime element of an integral domain R (here α is said to be a prime element if when $\alpha|\beta\gamma$, we have that either $\alpha|\beta$ or $\alpha|\gamma$), then α is irreducible (here α is said to be irreducible if when $\alpha = bc$, we have that either b or c is a unit).
- b. Observe that $x^2 2$ is irreducible in $\mathbb{Z}[x]$. Yet show that the ideal $I = (x^2 2)$ is not a maximal ideal. Hint: One way to show this is to construct a larger ideal $J \neq \mathbb{Z}[x]$ containing I (think about the example in class showing that $\mathbb{Z}[x]$ is not a PID); however, there are other, less direct ways to show this as well.