Additive Combinatorics Homework

Ernie Croot

April 8, 2011

1. For a prime $k \geq 3$, consider the set of integers of the form

$$S = \{d_0 + d_1k + \dots + d_nk^n : 0 \le d_i \le k - 2\}$$

Can S have k-1-term arithmetic progressions? What about k-term or (k+1)-term arithmetic progressions? Prove your answers.

- 2. Determine the size of the largest set S having the following properties: 1) $S \subseteq \{1, 2, ..., x\}$; and 2) If $x, y \in S$, then $x + y \notin S$.

$$M\left(\frac{1}{3} - \frac{1}{10}\right) < M_1, M_2, M_3 < M\left(\frac{1}{3} + \frac{1}{10}\right).$$

That is, each of the three subsectors contains about the expected number of points. To solve this problem think about Roth's idea for proving sets of positive density have three-term arithmetic progressions, and think about passing to subsectors.