Notes on the Bourgain-Katz-Tao theorem

February 28, 2011

1 Introduction

NOTE: these notes are taken (and expanded) from two different notes of Ben
Green on sum-product inequalities.

The basic Bourgain-Katz-Tao inequality says that for every ¢ > 0 there
exists ¢ > 0 such that if A C F, satisfies

ps < |A‘ < pl—e’

then
max(|A + A|, |A.A|) > \A|1+5.

Since the time this theorem first appeared many strengthenings have
appeared in the literature; for instance, Bourgain, Glibichuk and Konyagin
have shown that the lower bound of p® on |A| can be replaced with just
|A] > 2.

In this note I will not give the original proof, but will instead give a proof
that combines some results of Konyagin with a certain proposition appearing
in the Bourgain-Katz-Tao paper to get a relatively short proof.

2 The proof

The proof will amount to combining together the following two lemmas, the
first one due to Konyagin, and the second one due to Bourgain, Katz and
Tao:



Proposition 1 Suppose that B C F,,. Then,

1
3B>-3B?| = |B.B+B.B+B.B—B.B—B.B—B.B| > —min(|B|?p).
2

Proposition 2 Suppose that A C F, and that |A + A|,|A?| < K|A|. Then,
there is some subset B C A with |B| > K~¢|A| and |B.B — B.B| < K¢|B].

Now let us see how these imply the theorem: first, suppose that |A +
Al JA.A| < |AI*) where we will take § > 0 as small as desired in terms of
¢ in order to produce a contradiction.

Applying Proposition , using K = |A|° to obtain a subset B C A satisfy-
ing |B| > |A|*"¢ and

B2 — B} < K°|B| = |A]9|B| < [B['ro¥/0-9), (1)
Note that
|B2| < |A2| < |A|1+6 < |B|(1+6)/(1_Cé).

Now we consider two cases: either |B| > |/p or else |B| < /p.
If \/p < |B| < |A| < p'~*, then from Proposition 1 we have that

3B2—3B%| >p/2 > |BVO-9/2 > |BHe/2 > |BME

for p > po(e) (which we can assume — turns out to be an easy exercise
involving Cauchy-Davenport). On the other hand, if |B| < ,/p, then we have

|3B2 —3B% > |B|*/2 > |B|'™/? for0<e<1.
So either way we get
I3B% — 3B2| > |B|I*e/? > |B?|(-ed)+e/2)/(1+6)
Choosing now 0 > 0 small enough in terms of € > 0, we can assume that
13B% — 382 > |B2|*e/3,

Next we apply Plunnecke-Ruzsa-Petridis to this last inequality as follows:
let L satisfy |B*> — B%| = L|B?. Then, from P-R-P we deduce that

|B2|1+a/3 < |3B2_3B2| §L6|B2|.
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So, L > |B?|/*® which implies that
|B2 _B2| > |B2|1+e/18 > |B|1+8/18.
This then will contradict (1) for

co - €
1—cd 18"

And so, for ¢ this small, we must either have that our assumption |A + A| <
|A|1+ or |A.A| < |A|** is false; in other words, we must have that

cither |[A+ A| > |A|""/1%¢ or |A.A| > |A|'Fe/18e

2.1 Proof of Proposition 1

We begin with a lemma.

Lemma 1 Suppose B CF,. Then, there exists x € F such that | B+x*B| >
3 min(|BJ%, p).

Proof of the lemma. Basically we compute an average over additive energy
as follows: let

S = > E(B,x*B) = [{b1,bs,bs, by, x : by — by = x(bs — ba)}|.

z€Fp
z#0

For each of the |B|*(|B| — 1)? quadruples (by, b, bs, by) with by # by and
by # by there is a unique z that satisfies the above. For the remaining |B|?
quadruples where b; = by and by = by there are p — 1 choices for z. So,

S| = IBI*(IB| - 1)* + (» = 1)|BJ”.
It follows from simple averaging that there exists x € F,; such that

2 1\2
_ 1BP(BI- )

E(B,z * B) 1

+ |BJ?.

Then, using the fact that for sets B and C' we have

|BP|CP?

>
A i ¥e)



it follows that

B B
E(B,x+B) — (1B|-1?%/(p-1)+1

There are two possibilities to consider: either |B| > |/p, or else | B| < /p.
For the former case we obtain

|B+z* B| >

1
B+xzxB| > > p/2.
| 2 e Y
And for the latter case we have
|BJ? 2
B Bl > —— = |B|*/2.
BrasB 2 {0 = |BPY
This completes the proof. [ ]

Now we resume the proof of our Proposition: given y € F’ we either have
that |B +y* B| = |BJ|? or else there exists (b, by, b3, by) € Bx B x Bx B
such that

b1 +ybs = b3+ yba,
which is true if and only if y € (B — B)/(B — B).

Suppos that (B — B)/(B — B) # F,. We have then that there exists
y € (B—B)/(B—B) such that y+1 ¢ (B— B)/(B— B), which then implies
that

B+ (y+1)*B| = |BJ".
If we write y = (by — bs)/(ba — by), then we have
3B>—3B>D (by—by)*x A+ (by—bs+by—by)* A D (by—by)*(A+(y+1)xA),

which implies |3B* — 3B?| > |B+ (y + 1) * B| > |BJ*.
Now suppose that (B — B)/(B — B) = F,. Then, from the Lemma above
we deduce that there exists x € (B — B)/(B — B) such that

1
|B+ % B| > 5 min(|BJ?, p).
Proceeding much as before, we deduce that
3B> —3B* D 2B*—2B% D (by —by)(B+ 2% B),

which implies

1
3B* =3B = |B+oxB| = Smin(B.p).



2.2 Proof of Proposition 2

let N = |A|. For sets C,D C G (our additive group), we shall adopt the
simplifying notation |C| < |D| to mean |C| < ¢, K°|D|, where ¢y, ¢y > 0,
and where K is as in the hypotheses of the proposition. Also, |C| 2 |D| will
have the analogous meaning.

We will require the following version of the Balog-Szemeredi-Gowers The-
orem.

Theorem 1 Suppose that B is a subset of an additive group G, where |B| =
N and E(B,B) > N3/K. Then, there exists B C B with |B'| 2 N,
such that for every pair bi,by € B we have that there > N’ eight-tuples
(ay,...,a3) € A x --- X A such that

bl — bg = (CLl - ag) + (ag — CL4) + (a5 — a6) + (&7 — ag).
We also will require Plunnecke-Ruzsa-Petridis:

Theorem 2 Suppose that |C + C| < K|C|. Then, |kC — (C| < K**|C].
The same conclusion holds if we instead assume |C' — C| < K|C/|.

And now we resume the proof of the Proposition: we begin by showing
that if |A.A| < N and |[A+ A| < N, then there exists a subset A’ C A with
|A’| 2 N such that for any integers k, ¢ > 1 we have that

(A — AYAF /A S N,
(Such a result would put us “in the ballpark” of proving the Proposition, and
should give us confidence that it can in fact be proved.) To see that such a set
A’ exists, we begin by noting that |A + A| < N implies that F(A4, A) > N3;
and then, Theorem 1 above tells us that for any pair (a/,a”) € A’ x A" we
have that the equation

/ "
a —a = ap—ay+as—aq4+ a5 —ag+ ay — ag

has > N7 solutions with ay,...,ag € A. And now if we multiply both sides
by an arbitrary element ¢ € A* /A we get

cla" —ad") = cay —cag + -+ -+ cay — cag.



The right-hand-side here can be written in > N7 ways with the ca;’s elements
of A¥1/A*. Thus, each element of (A’ — A’)A¥/A® has > N7 representations
as a sum-and-difference of 8 elements of A¥*1/A*. Since by Plunnecke-Ruzsa-
Petridis (multiplicative analogue) we have that |[A*1/Af| < N, it follows
that

NT|(A — ANA*/AY| < # possible 8 — tuples (cay, ..., cag) < NB,
as claimed.

Next, we apply Theorem 1 again, this time a multiplicative analogue: we
let A” C A’ such that for any pair af, aj we have that the equation

" " ! /AN AN AN
ayfay = ajasaza,/asagaygag

has > N7 solutions with a},...,as € A'.
Suppose that a4, a] is another pair of elements in A” (possibly the same
as af,ay) and note that

Pl "ol
"o n.ono__ A1Q9030,090, — Q30905050708

a 4y — GGz =

!
A50gQ70g

The idea now is to write the right-hand-side as a sum of six elements of
(A" — A" A* /A for k =5 and ¢ = 4, and then to count solutions to

n_n n_n
ayay — asas = 1+ To+ X3+ x4 + T5 + e (2)

in much the same way as is used to prove Theorem 1. The magic identities
to produce these z;’s are given as follows: let P := alagasag, and then let

n = dabdiaial(a] — ay)/P
r = dahdya(a] — db)ay/P
v = djahdy(a; — ap)alal/P
1 = dabldh — d})ajala/P
vy = djla — af)}apabal /P
o = (d) — a)afasafala/P.

Now, one can check that for fixed a7, aj, a and af, the obvious mapping
. / / / /! / / / /
¢ o (T1,.76) — (a1, a9, a3/a5, a)/ag, az, ag)
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(determined by solving for these parameters in terms of the x;’s) is injective.
Basically, the map is defined as follows: note that for fixed af,a}, a4, alf we
have that x4 determines a} uniquely. And then if one knows x5, one quickly
obtains aj. Then, knowledge of a!, a}, x5, x6, v4 determines a}/ar. Also note
that knowledge of x; determines af, since a}ajala)/P = a!/a}, and since we
are given this ratio. The other variables can be obtained in a similar manner.

So, the mapping

Y o (d, . ag) — (2., %)

(given by the definition of the x;’s above) is at worst N?-to-1.

What this means is that those > N7 possibilities for a}, ..., a; we had ear-
lier (that determine a}/a}) determine > N7/N? = N° sequences (z1, ..., Tg).
In other words, for each 4-tuple (2,24, 2%, 2)) € A” x A” x A” x A” there
are 2 N° sequences (x1,To, T3, T4, T5, Tg) € (A’ — A') A%/ A? satisfying (2). Tt
follows that

N°|A"A"— A" A" < # possible 6—tuples z, ..., 76 € (A'—A")A%/A* < NE,

which proves the Proposition.



