# Fourier proof of the classical Littlewood-Offord inequality 

Ernie Croot

April 18, 2011

## 1 Introduction

We saw in class the standard combinatorial Littlewood-Offord inequality, and here we will consider the discrete version:

Theorem 1 Suppose $x_{1}, \ldots, x_{k}$ are non-zero real numbers. Then, for any $x \in \mathbb{R}$ we have that there are $O\left(2^{k} / \sqrt{k}\right)$ choices for $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in\{+1,-1\}^{k}$ such that

$$
\varepsilon_{1} x_{1}+\cdots+\varepsilon_{k} x_{k}=x
$$

Our proof will make use of Fourier analysis, together with a basic fact from elementary Diophantine approximation.

## 2 Proof of the theorem

We begin with the following lemma that we will apply to transfer our problem to $\mathbb{Z}_{N}$ where the Fourier analysis is easier (this lemma is due to Dirichlet):

Lemma 1 Given $y_{1}, \ldots, y_{k} \in \mathbb{R}$ and $Q \in \mathbb{Z}_{+}$, there exists an integer $1 \leq D \leq$ $Q$ and integers $N_{1}, \ldots, N_{k}$ such that

$$
\left|y_{i}-N_{i} / D\right| \leq 1 / D Q^{1 / k}
$$

Proof. The proof is just via some pigeonholing: consider the set of mod 1 vectors

$$
\left\{\left(j y_{1}, \ldots, j y_{k}\right) \quad(\bmod 1): 0 \leq j \leq Q\right\} .
$$

For each of these points, draw a box around them of radius $1 / 2 Q^{1 / k}$ using the $\ell^{\infty}$ norm. Each such box has volume $1 / Q$; and so thinking of these boxes as subsets of the torus $[0,1]^{k}$ we have that since there are $Q+1$ of them, their total volume exceeds the volume of the torus, implying that two of these boxes must intersect. Say the boxes correspoinding to this intersection are associated with $j=j_{1}$ and $j_{2}$, where $j_{1}>j_{2}$. It is easy to see that this means that for all $i=1, \ldots, k$,

$$
\left\|\left(j_{1}-j_{2}\right) y_{i}\right\|=\left\|j_{1} y_{i}-j_{2} y_{i}\right\| \leq 1 / Q^{1 / k}
$$

(Here, $\|y\|$ denotes the distance from $y$ to the nearest integer.) Letting $D=j_{1}-j_{2}$ we then have that for $i=1, \ldots, k$,

$$
D y_{i}=I_{i}+\delta_{i}, \text { where }\left|\delta_{i}\right| \leq 1 / Q^{1 / k}, \text { and } I_{i} \in \mathbb{Z}
$$

Dividing through by $D$ the lemma now follows.
We now resume the proof of Littlewood-Offord: given $x_{1}, \ldots, x_{k}$, consider the set

$$
S:=\left\{\gamma_{1} x_{1}+\cdots+\gamma_{k} x_{k}: \gamma_{i}=0, \pm 2\right\}
$$

(This set contains all the differences of two sums of the form $\varepsilon_{1} x_{1}+\cdots+\varepsilon_{k} x_{k}$.) Let $E \geq 1$ be any integer such that for every non-zero $s \in S$ we have that $|E s| \geq 1$, and set $y_{i}=E x_{i}, i=1, \ldots, k$.

Next, we apply the above lemma, choosing $Q \geq 1$ as needed later in the proof. Let $z_{i}=D y_{i}=D E x_{i}$, and note that $z_{i}=I_{i}+\delta_{i}$, where $\left|\delta_{i}\right| \leq 1 / Q^{1 / k}$. The point of choosing $D$ and $E$ will now be made clear by the following claim, which basically says we can transfer our problem to $\mathbb{Z}$ :

Claim. For $Q$ sufficiently large we will have that for any sequence $\varepsilon_{1}, \ldots, \varepsilon_{k}, \varepsilon_{1}^{\prime}, \ldots, \varepsilon_{k}^{\prime}=$ $\pm 1$,

$$
\begin{equation*}
\varepsilon_{1} x_{1}+\cdots+\varepsilon_{k} x_{k}=\varepsilon_{1}^{\prime} x_{1}+\cdots+\varepsilon_{k}^{\prime} x_{k} \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\varepsilon_{1} I_{1}+\cdots+\varepsilon_{k} I_{k}=\varepsilon_{1}^{\prime} I_{1}+\cdots+\varepsilon_{k}^{\prime} I_{k} \tag{2}
\end{equation*}
$$

First let us suppose that (1) holds. Then, multiplying through by $D E$ and rearranging terms, we find that

$$
\left(\varepsilon_{1}-\varepsilon_{1}^{\prime}\right) z_{1}+\cdots+\left(\varepsilon_{k}-\varepsilon_{k}^{\prime}\right) z_{k}=0
$$

Writing the $z_{i}$ 's in terms of the $I_{i}$ 's then gives

$$
\left(\varepsilon_{1}-\varepsilon_{1}^{\prime}\right) I_{1}+\cdots+\left(\varepsilon_{k}-\varepsilon_{k}^{\prime}\right) I_{k}=O\left(k / Q^{1 / k}\right)
$$

If $Q$ is large enough the RHS will be smaller than $1 / 2$; and so, the LHS, being an integer, must therefore be 0 . This then establishes (2).

Conversely, suppose that (2) holds. Then, it follows that

$$
E \cdot\left(\left(\varepsilon_{1}-\varepsilon_{1}^{\prime}\right) x_{1}+\cdots+\left(\varepsilon_{k}-\varepsilon_{k}^{\prime}\right) x_{k}\right)=O\left(k / D Q^{1 / k}\right)
$$

Again, if $Q$ is large enough then the RHS will be less than $1 / 2$ in magnitude; yet, the LHS is of the form $E s$, where $s \in S$. Since $E$ was chosen to make any such non-zero product exceed 1 in magnitude, we are forced to have that the LHS equals 0 . The claim now follows.

Now choose $N$ to be a very large prime number - so large that it does not divide any non-zero integer of the form

$$
\gamma_{1} I_{1}+\cdots+\gamma_{k} I_{k}, \text { where } \gamma_{i}=0, \pm 2
$$

It is easy to see, then, that for such $N$ we will have that

$$
\varepsilon_{1} x_{1}+\cdots+\varepsilon_{k} x_{k}=\varepsilon_{1}^{\prime} x_{1}+\cdots+\varepsilon_{k}^{\prime} x_{k}
$$

if and only if

$$
\varepsilon_{1} I_{1}+\cdots+\varepsilon_{k} I_{k} \equiv \varepsilon_{1}^{\prime} I_{1}+\cdots+\varepsilon_{k}^{\prime} I_{k} \quad(\bmod N)
$$

That is to say, we have now reduced ourselves to a Littlewood-Offord problem for $\mathbb{Z}_{N} \ldots$ one that is amenable to the methods of discrete Fourier analysis.

Let now $r(x)$ denote the number of representations

$$
x \equiv \varepsilon_{1} I_{1}+\cdots+\varepsilon_{k} I_{k} \quad(\bmod N), \text { where } \varepsilon_{i}= \pm 1
$$

We have that

$$
r(x)=1_{\left\{I_{1},-I_{1}\right\}} * \cdots * 1_{\left\{I_{k},-I_{k}\right\}}(x) .
$$

By Fourier inversion, then, we deduce that

$$
\begin{aligned}
r(x) & =N^{-1} \sum_{a=0}^{N-1} e^{2 \pi i a x / N} \hat{r}(a) \\
& =N^{-1} \sum_{a=0}^{N-1} e^{2 \pi i a x / N} \hat{1}_{\left\{I_{1},-I_{1}\right\}}(a) \cdots \hat{1}_{\left\{I_{k},-I_{k}\right\}}(a) \\
& =N^{-1} \sum_{a=0}^{N-1} e^{2 \pi i a x / N} \prod_{j=1}^{k}\left(e^{2 \pi i a I_{j} / N}+e^{-2 \pi i a I_{j} / N}\right) \\
& =2^{k} N^{-1} \sum_{a=0}^{N-1} e^{2 \pi i a x / N} \prod_{j=1}^{k} \cos \left(2 \pi a I_{j} / N\right) .
\end{aligned}
$$

Since all we need is an upper bound, we just need to work with

$$
r(x) \leq 2^{k} N^{-1} \sum_{a=0}^{N-1}\left|\prod_{j=1}^{k} \cos \left(2 \pi a I_{j} / N\right)\right|
$$

Using Hölder, we deduce that

$$
r(x) \leq 2^{k} N^{-1} \prod_{j=1}^{k}\left(\sum_{a=0}^{N-1}\left|\cos \left(2 \pi a I_{j} / N\right)\right|^{k}\right)^{1 / k}
$$

Now, all the factors in this product are equal since the $I_{i}$ 's are non-zero, and since

$$
\left\{a I_{i}: a=0, \ldots, N-1\right\} \equiv\{0, \ldots, N-1\} \quad(\bmod N)
$$

So,

$$
r(x) \leq 2^{k} N^{-1} \sum_{|a|<N / 2}|\cos (2 \pi a / N)|^{k}
$$

To bound this sum from above, we only consider those $a$ satisfying $|a|<$ $N / 4$, since the total sum is at most double this. For such $a$ we have that

$$
\cos (2 \pi a / N)=1-(2 \pi a / N)^{2} / 2+O\left((a / N)^{4}\right)<1-c(a / N)^{2}
$$

for some $c>0$ (we won't even bother to work it out). Now suppose $a$ satisfies

$$
|a| \in[h N / \sqrt{k},(h+1) N / \sqrt{k}], \text { where } 0 \leq h \leq \sqrt{k} / 4 .
$$

It follows that for such $a$ we will have

$$
|\cos (2 \pi a / N)|^{k} \leq\left(1-c(a / N)^{2}\right)^{k} \leq\left(1-c j^{2} / k\right)^{k} \leq e^{-c j^{2}}
$$

So,

$$
r(x) \ll 2^{k} N^{-1} \sum_{h=0}^{\sqrt{k} / 4}(N / \sqrt{k}) e^{-c j^{2}} \ll 2^{k} / \sqrt{k}
$$

thus completing the proof of Littlewood-Offord.

