11 The Littlewood-Offord problem

11.1 Early results

In 1943 Littlewood and Offord published the following result. Let
2y, ..., z, be complex numbers such that |zl =1 for each i ; then the
number of sums Y7, &2, (g, = *1) lying inside any circle of radius r
cannot exceed

Cr” logn

for some constant C. Two years later Erdos showed, by a very nice
application of Sperner’s theorem, that the log term can be omitted,
-thus giving the best order of magnitude possible for the bound. In this
chapter we shall ‘explore variations on this problem, showing that
some generalizations of Sperner’s theorem are central to the develop-
ment. After giving the basic ideas and the early results in this section,
we shall discuss M-part Sperner theorems in Section 11.2 and then
show their relevance to the Littlewood-Offord problem in Section
11.3.

There are, in fact, two equivalent formulations of the result of
Littlewood and Offord described above. If 271z is added to each
sum, the differences between sums remamn unchanged, and the
coefficients of the z; are now 8, =0 or 2. If we scale everything by a
factor of 1, we obtain the following: the number of sums

7=10:;(6;=0 or 1) lying inside any circle of diameter r cannot
exceed the bound (11.1). This alternative formulation with
coefficients 0 or 1 instead of +1 is sometimes more convenient.

We start our survey by considering combinations of real numbers,

noting that the one-dimensional analogue of a disc of radius 1 is an
interval of length 2.

Theorem 11.1.1 (Erdos 1945) Let X1, - - ., X, be real numbers such
that [x;| =1 for each i, and let J be any interval of length 2 open at at
least one end. Then the number of sums Nio1 &% (&, = 1) lying in J

~is at most (

n
[n/Z])'
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Proof Without loss of generality we can assume that all the x; are
positive; for any negativé x; can be replaced by —x;. We now associate
to each sum Y7, gx; the set A ={i : &, =1}. If A, and A, are two such
sets, and A; c A,, then the corresponding sums would differ by at
least 2 and so they could not both be in J. It follows that the sets A
corresponding to sums in J must form an antichain; the result is
therefore immediate from Sperner’s theorem. O

Given any interval of length 2r, open at at least one end, we can
split it up into 7 intervals of length 2. Applying the above theorem to
each of these intervals we obtain the following corollary.

Corollary 11.1.2 If the x; are as in Theorem 11.1.1 and J is any
interval of length 2r open at at least one end, then the number of

sums Y7 £x,(¢; = £1) lying in J is at most r(

n ) _
[n/2}/" B
This bound is not, however, the best possible, for we can replace it

by the sum of the r largest binomial coefficients (r;)

Theorem 11.1.3 (Erdos 1945) Let x;,...,x, be real numbers,
|x;| =1 for each i, and let J be any interval of length 2r, open at at
least one end. Then the number of sums Y7, &x; (¢, = £1) lying in J

is at most
; ([(n fi)/2])'

Proof As in the proof of Theorem 11.1.1, assume that each x; is
positive, and associate to each sum X7, £:x; the set A= {i: & =1}. If
A, and A, are two such sets and A; = A, and |A,— A;| =7, then the
corresponding sums will differ by at least 2r, so that at most one of
them can be in J. The result now follows from Exercise 2.9. X

We now return to the case of complex numbers. We shall use j
rather than i as a suffix so as to avoid confusion with i where i* = —1!

Theorem 11.1.4 (Erdos 1945) Let z, ..., z, be complex numbers
with |z]=1 for each j. Then the number of sums L, &z (¢ =%1)
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