
Spe
tral stru
ture of sets of integersBen Green1Abstra
tLet A be a small subset of a �nite abelian group, and let R be the set of points atwhi
h its Fourier transform is large. A result of Chang states that R has a great deal ofadditive stru
ture. We give a statement and proof of this result and an example whi
hshows that it is sharp. We also dis
uss some of the appli
ations of it whi
h have so farbeen dis
overed. Finally we dis
uss some related open questions.1. Introdu
tion, notation and de�nitions. Harmoni
 analysis has been used to greate�e
t in additive number theory for over 150 years. In this arti
le we will look at one spe
i�
theme whi
h has re
eived attention of late. This is the prin
iple that the large values of theFourier transform of a small set have a great deal of stru
ture.We begin by introdu
ing a small amount of notation whi
h is ne
essary for the dis
ussion.Throughout this paper N will be a large prime number and we will write ZN for the additivegroup2 of residues modulo N . If E = fe1; : : : ; eLg � ZN we write Span(E) for the set of allsums s(") = Pj "jej with "j 2 f�1; 0; 1g. We will write !xN = e2�ix=N . Often the subs
riptN will be suppressed, as the value of N will be 
lear from the 
ontext. If f : ZN ! C is afun
tion and r 2 ZN then we de�ne the Fourier transform of f at r bybf(r) = Xx f(x)!rx:We will adopt the 
onvenient notational pra
ti
e of identifying sets with their 
hara
teristi
fun
tions.2. Chang's stru
ture theorem. In a re
ent paper [5℄ of Chang the following result isstated3.Theorem 1 (Chang) Let �; � 2 [0; 1℄, Let A � ZN be a set of size �N and let R � ZN bethe set of all r for whi
h j bA(r)j � �jAj. Then there is a set E � ZN with jEj � ��2 log � 1��su
h that R � Span(E).1The author is a Fellow of Trinity College, Cambridge. Address: Trinity College, Cambridge CB2 1TQ,England.2Mu
h of what we have to say 
an be generalised to arbitrary �nite abelian groups. However in this arti
lewe will es
hew su
h generality and dis
uss instead the group ZN and, o

asionally, the group Zn2.3Chang's paper seems to be the �rst pla
e where this result is expli
itly stated. However, similar ideas
an be found in an earlier paper of Bourgain [4℄, and the whole 
ir
le of ideas perhaps originated with Rudin[14℄. We will dis
uss Rudin's inequality later in the paper.1



It is 
onvenient to give a name to the situation 
overed by this theorem. Thus if A;R � ZNand if � 2 (0; 1) then we say that A is �-large at R if j bA(r)j � �jAj for all r 2 R.Theorem 1 is an extremely interesting result. Parseval's theorem implies that the set R hassize at most ��2��1, but for small � this is mu
h bigger than the size of E guaranteed byChang's result. Theorem 1 may thus be viewed as saying that the \large spe
trum" of asmall set is very highly stru
tured.There are already two rather di�erent appli
ations of this result in 
ombinatorial numbertheory. The �rst, in Chang's original paper [5℄, 
on
erns Freiman's theorem on sets withsmall sumset. The se
ond, due to the author [7℄, 
on
erns arithmeti
 progressions in sumsets.We will dis
uss this appli
ation in x6.In [5℄ Theorem 1 is derived from an inequality of Rudin. We will des
ribe a proof of this resultin the next two se
tions. A rather di�erent proof was shown to us by I.Z. Ruzsa (personal
ommuni
ation), an a

ount of whi
h may be found in [9℄ (2). In x5 we give the dedu
tionof Theorem 1.3. An inequality of Rudin. The main sour
es for this dis
ussion were [10℄ and [14℄.Let us begin by stating the inequality of Rudin that interests us. We say that a set � =f�1; : : : ; �mg � ZN is disso
iated4 if the only solution to the equation"1�1 + � � �+ "m�m = "01�1 + � � �+ "0m�mwith "j; "0j 2 f�1; 0; 1g is the trivial solution "j = "0j = 0.In the statement of Rudin's inequality, � will be assumed to be disso
iated and we willregard � and ZN as �nite measure spa
es (M1; �1) and (M2; �2) respe
tively. �1 will be the
ounting measure, so that �1(M1) = j�j, while �2 will be the normalised 
ounting measure,whi
h means that �2(M2) = 1. Write B(Mi) for the spa
e of fun
tions on Mi.Proposition 1 (Rudin) Let T : B(M1)! B(M2) be the linear map whi
h sends a sequen
e(an)n2� 2 B(M1) to the fun
tion f(x) =Pn2� an!nx. Then for any p > 2 we have the boundkTk2!p � 12ppon the L2{Lp norm of the operator T .Written out in full, this means thatkfkpp = N�1Xx �����Xn2� an!nx�����p � (144p)p=2 Xn2� janj2!p=2 :4The reader should be aware that various slightly di�erent de�nitions will be en
ountered in the literature.2



The formulation we have used in Proposition 1 is, perhaps, more suggestive.Observe that �Pn2� janj2�1=2 is equal to kfk2. The inequality may, therefore, be interpretedas a statement to the e�e
t that the L2 and Lp norms of a fun
tion whose spe
trum isdisso
iated are 
omparable.In the next few paragraphs we show that Rudin's inequality is true, on average, for modi�edversions of f in whi
h the an have been subje
ted to random and independent 
hanges ofsign. This may seem like a 
urious thing to do, so we o�er some motivation at the end of these
tion.Suppose then that Xj, j 2 � are independent Bernoulli random variables taking values inf�1g and let us 
onsider the random fun
tionX(x) = Xn2� anXn!nx:A sensible way to estimate EkXkpp is to writeEkXkpp = N�1 Xx2ZN Z 10 P �jX(x)j � t1=p� dt; (1)re
alling the availability of 
ertain large deviation inequalities asso
iated with the names ofBernstein, Cherno� and Hoe�ding. The following is a typi
al example:Proposition 2 Let Z1; : : : ; Zn be independent 
omplex-valued random variables with zeromeans and with jZij � ai for all i = 1; : : : ; n. Let t be a positive real number. ThenP (jZ1 + � � �+ Znj � t) � 2e�t2=4P jaij2:See, for example, [9℄ (1).Substituting into (1) gives EkXkpp � 2 Z 10 e�t2=p=4P jaij2 ;an expression whi
h may be evaluated expli
itly as2p+1��p+ 22 ��X jaij2�p=2 :A short 
al
ulation using a sharp form of Stirling's formula then yieldsEkXkpp � (6pp)p �X jaij2�p=2 : (2)3



This is all very well, but there is no reason to suppose that the behaviour of f should belinked in any way to that of the random fun
tion X. The disso
iativity of � is exa
tly whatprovides su
h a link, a fa
t that we shall endeavour to explain now.We begin with the observation that the Lp norm of f(x) is the same as that off(x+ �) = Xn2� an!n�!nxfor any � 2 ZN that we may 
are to sele
t. Suppose that for any 
hoi
e of a sign fun
tion" : � ! f�1g we 
ould �nd a � with !n� � "n for all n 2 � (we will not be pre
ise aboutwhat we mean by the approximate symbol � here). Now (2) implies that there is a spe
i�

hoi
e of " for whi
h 




Xn an"n!nx




p � 6pp Xn janj2!1=2 : (3)Sele
ting an appropriate � would then allow us to re
over an inequality of the desired form forf . Now whether or not one 
an �nd su
h a � is related to issues of simultaneous diophantineapproximation. Observe that if there is a \small" linear relation amongst the elements of� - say, for example, f5; 7; 12g � � - then su
h a � need not exist. One 
an prove usingFourier analysis that this is ne
essary and suÆ
ient; that is to say, if there are no smalllinear relations then � 
an always be found, whatever the 
hoi
e of signs "n. The phrase\no small linear relations" turns out to mean that � is linearly independent over a set su
has f�D;�D + 1; : : : ; Dg where D � j�j. Unfortunately this is a stronger 
ondition thanjust disso
iativity, but when it does hold f models the Lp behaviour of the randomised sumX very 
losely. It turns out however that disso
iativity is exa
tly what we need to make adi�erent approa
h to the 
omparison of f and X work.4. Riesz produ
ts and Young's inequality. It is 
onvenient to have a notation fortwisted versions of f like those we en
ountered in (3). If " : � ! f�1g is a sign fun
tionthen write f" = Xn2� an"n!nx:Write p"(x) for the Riesz produ
tp"(x) = 2Yn2� �1 + "n2 �!nx + !�nx�� :Claim 1 We have f = f" � p". 4



Proof of 
laim. This 
an be established by a fairly straightforward 
omputation. We havef" � p"(x) = 2N�1Xy Xm2� am"m!m(x�y)Yn2� �1 + "n2 �!ny + !�ny�� : (4)Multiplying out the produ
t and 
hanging the order of summation, one is 
onfronted with aweighted sum of terms of the formXy !(n1+���+nr�n01�����n0s�m)y; (5)where the ni; n0i are distin
t elements of � and m 2 �. The disso
iativity of � implies thatsu
h a sum is zero unless r = 1, s = 0 and m = n1, in whi
h 
ase it equals N . It is easy tosee that the weight atta
hed to (5) in this 
ase (in the expanded out version of (4)) isN�1an1"2n1!n1x = N�1an1!n1x;and the 
laim follows qui
kly.Now the Riesz produ
t p" is non-negative, and so kp"k1 is simply N�1Px p"(x). This summay easily be 
al
ulated by expanding out another produ
t and using disso
iativity, and itturns out that kp"k1 = 2. Thus by Young's inequality and the 
laim we havekfkp = kf" � p"kp� kf"kpkp"k1= 2kf"kp (6)for any p � 2 and any 
hoi
e of sign fun
tion ". Now (2) implies that there is a spe
i�
 
hoi
eof " for whi
h kf"kp � 6pp Xn janj2!1=2 :Thus kfkp � 12pp Xn janj2!1=2 ;and Proposition 1 follows immediately.5. Completion of the proof of Chang's theorem. In this se
tion we derive Theorem 1from Proposition 1. It turns out that the dual form of Proposition 1 is easier to work within this 
ontext. This takes the formkT �kp0!2 � 12pp; (7)5



where p0 is the dual exponent of p. Here T � : B(M2) ! B(M1) is the adjoint of T , whi
h iseasily seen to be given by T �f(n) = N�1Xx f(x)!nxfor n 2 �.Now re
all that we are interested in a set A � ZN with 
ardinality �N , and we have writtenR for the set of all r 2 ZN for whi
h j bA(r)j � �jAj. We wish to show that R has lots ofstru
ture, and we do this by proving that it does not 
ontain a very large unstru
tured subset.To this end let � be a maximal disso
iated subset of R, and apply (7) with p = log(1=�) andf equal to the 
hara
teristi
 fun
tion of A. It is easy to 
he
k thatkT �Ak2 = N�1 Xn2� j bA(n)j2!1=2 � ��j�j1=2and that kAkp0 = �1=p0 = �1�1=p � e�:It follows immediately that j�j � ��2 log(1=�):Thus �, some maximal disso
iated subset of R, is rather small. The maximality implies thatthe addition of any new r 2 R will spoil the disso
iativity property. It is easy to see that thisimplies that ea
h r is expressible asPj �j�j, where � 2 f�2;�1;�12 ; 0; 12 ; 1; 2g, and Theorem1 follows on taking E = 12� [ � [ 2�.6. Chang's theorem and progressions in sumsets. In this se
tion we dis
uss the paper[7℄. At various points we will use the fun
tion k : k : ZN ! R de�ned as follows. If x is aresidue 
lass modulo N , pi
k a representative x for x from the interval f�(N�1)=2; : : : ; (N�1)=2g. Set kxk = jx=N j.The main result of [7℄ is the following improvement of a result of Bourgain [4℄.Theorem 2 Let C;D � ZN have 
ardinalities 
N and ÆN respe
tively. Then there is anabsolute 
onstant 
 > 0 su
h that C +D 
ontains an AP of length at leastexp �
 �(
Æ logN)1=2 � log logN�� :
6



This looks a little te
hni
al. It is perhaps easier to think of 
 and Æ as being �xed positivereals: then the theorem says that for large N the sumset C + D 
ontains a progression oflength e
0plogN .The �rst step of the argument involves the introdu
tion of a 
on
ept that we 
alled, in [7℄,hereditary non-uniformity (HNU). Roughly speaking, a set A � ZN was said to be HNU ifevery subset B � A has a large Fourier 
oeÆ
ient. As pointed out to us by Gowers (personal
ommuni
ation, and see also [16℄), this is not quite the \right" de�nition. It is more naturalto 
onsider, instead of subsets of A, arbitrary fun
tions supported on A. Before stating thelemma whi
h explains this, we introdu
e two very temporary pie
es of notation. Let A be asubset of ZN, write AÆ for its 
omplement and let 
 be a positive real. We say that A hasproperty P (
) if, for any fun
tion f supported on A, we havesupr 6=0 j bf(r)j � 
 �����Xx f(x)����� : (8)We say that A has property Q(
) if there is a fun
tion g supported on AÆ for whi
h
Xr 6=0 jbg(r)j � �����Xx g(x)����� : (9)Lemma 1 The properties P (
) and Q(
) 
oin
ide.Proof. We begin by proving that P (
)) Q(
), whi
h is the easier of the two impli
ations.It is also the only part of the lemma whi
h is a
tually used in proving Theorem 2. Supposethen that A has the property Q(
), and let g be a fun
tion supported on AÆ and satisfying(9). If f is any fun
tion supported on A then we have Px f(x)g(x) = 0, whi
h implies thatPr bf(r)bg(r) = 0. By the triangle inequalty, this givessupr 6=0 j bf(r)jXr 6=0 jbg(r)j � �����Xx f(x)����� �����Xx g(x)����� :Thus indeed A has property P (
).To prove that P (
) ) Q(
) we use the (�nite-dimensional) Hahn-Bana
h thorem. Supposethat A has property P (
). Write X for the spa
e of all C -valued fun
tions on ZN , and de�nea seminorm 
 : X ! R�0 by 
(f) = 
�1 supr 6=0 j bf(r)j (this has all the properties of a norm,ex
ept that 
(1) = 0). Let Y be the spa
e spanned by the 
omplex-valued fun
tions on AÆand the 
onstant fun
tion 1, and de�ne a linear fun
tional T : Y ! R byT (f + �1) = Xx f(x): (10)7



for all f supported on AÆ and � 2 C . Sin
e A has property P (
), this satis�esjTf j � 
(f)for all f 2 Y . By the Hahn-Bana
h theorem we may extend T to a fun
tional T 0 on all of Xwhi
h satis�es the same bound, jT 0f j � 
(f): (11)This fun
tional will be of the form T 0f = hf;  i for some fun
tion  : ZN ! C , and it is
lear from (10) that  (x) = 1 for all x 2 AÆ. We 
laim that the fun
tion g =  � 1 satis�es(9). To see this, observe that by (11) we have, for any fun
tion f : ZN ! R, the boundXx f(x) (x) � 
�1 supr 6=0 j bf(r)j: (12)Take f to be the following fun
tion, de�ned by spe
ifying its Fourier transform:bf(r) = � N exp(i arg b (r)) r 6= 00 r = 0:The left-hand side of (12) is then just Pr 6=0 jb (r)j, whi
h is equal to Pr 6=0 jbg(r)j. ThusLHS of (12) = Xr 6=0 jbg(r)j:On the other hand supr 6=0 j bf(r)j is at most N . Furthermore, sin
e P (x) = T 01 = 0, wehave jP g(x)j = N . Thus RHS of (12) � 
�1 ���X g(x)��� :The proof is 
omplete.We shall say that a set A is 
-hereditarily non-uniform (HNU) if it has the property P (
) (orQ(
)). Note on
e again that this notion is rather stronger than that used in the paper [7℄.Using the easy dire
tion of Lemma 1, we 
an demystify the 
onne
tion between sumsets andHNU sets.Lemma 2 Let C;D � ZN have jCj = 
N and jDj = ÆN . Let A be the 
omplement of C+D.Then A is p
Æ-HNU. 8



Proof. All one has to do is 
he
k that C+D has property Q(p
Æ). This is easy; by Parseval'sidentity and the Cau
hy-S
hwarz inequality one 
an satisfy (9) by taking g = C �D.For the remainder of the dis
ussion we will assume for simpli
ity that 
 = Æ = 14 ; this does notsimplify the argument, but keeps the number of unspe
i�ed variables down. The heart of [7℄is the following proposition, whi
h in 
ombination with Lemma 2 leads qui
kly to Theorem2.Proposition 3 Suppose that A is 14-HNU. Then AÆ, the 
omplement of A, 
ontains an APof length at least eplogN=128.The proof of this goes roughly as follows. Suppose that A is HNU. Then every B � A mustbe non-uniform in the sense of having a large Fourier 
oeÆ
ient. Take B to be as 
lose touniform as possible among all subsets of A having a 
ertain size. That is, �x � 2 R and letB � A have supr 6=0 j bB(r)jminimal subje
t to jBj = b�N
. If the value of this minimum is �jBj then we have � � 1=4from the de�nition of HNU. The value of � gets 
hosen at the end of the proof to optimisethe argument; it turns out that a sensible 
hoi
e is � = e�plogN=64.The idea is now that we try to modify the set B to give a new subset B0 � A of the same sizebut whi
h is more uniform than B. Of 
ourse this is impossible, so there must be somethingwrong with any su
h modi�
ation te
hnique that we might 
are to write down.One way of modifying B is as follows. Choose small random subsets Y � B and X � ZN ofthe same size t = 218 logN . Form the (multi)set B0 = (B n Y ) [ X. What are the Fourier
oeÆ
ients of B1? Applying a Bernstein-type inequality similar to that in Proposition 2, itis not hard to see that with positive probability bY (r) � t bB(r)=jBj and that bX(r) is small
ompared with t for all r 6= 0. Pi
king spe
i�
 X and Y for whi
h these rough statementshold, we see that j bB0(r)j � j bB(r)j (13)for all r 6= 0, whi
h 
ertainly implies thatsupr 6=0 j bB0(r)j � supr 6=0 j bB(r)j:Naturally this does not violate the extremal property of B, be
ause B0 need not be a subsetof A. However we 
an try and modify it by 
hanging the elements x1; : : : ; xt of X. Let ustry 
hanging x1 to x1 + h1 to give a set B1. ThenbB1(r) = bB0(r) + !rx1 �!rh1 � 1� :9



Now if krh1k were small for all r then this would di�er insigni�
antly from bB0(r). If weperformed t su
h operations, 
hanging ea
h xj to xj + hj in turn to give sets B2; : : : ; Bt,then we might still have j bBt(r)j � j bB(r)j. Sadly there is no h1 with this property. Howeverfor many r we are not at all 
on
erned about 
hanging bB0(r) quite substantially. Indeedif j bB(r)j � �jBj=2 then, by (13), we also have j bB0(r)j � �jBj=2. Hen
e after t arbitrarymodi�
ations we would still have j bBt(r)j < �jBjprovided that 2t < �jBj=2. This holds by a huge margin be
ause t is so small, and so we 
ometo the following key realisation. Let R be the set of r 2 ZN n 0 for whi
h j bB(r)j � �jBj=2. Ifwe 
an �nd h1; : : : ; ht su
h that krhjk is small for all r 2 R, and for whi
h the modi�ed setBt is a subset of A, then we will have violated the extremality of B.Thus we are interested in H, the set of all h for whi
h krhk is small for all r 2 R. Atthis point we invoke Theorem 1, whi
h tells us that R lies in Span(E) for some set E of
ardinality � ��2 log(1=�). Note that in this setting Theorem 1 is extremely powerful as �is so small; a straightforward appli
ation of Parseval's theorem would be hopeless. Using a
lassi
al appli
ation of the pigeonhole prin
iple due to Diri
hlet it is easy to see that thereis an arithmeti
 progression P of length � N 
= log(1=�) su
h that kehk is small for all e 2 Eand h 2 P . The fa
t that R � Span(E) tells us that P � H, provided that the di�erento

uren
es of the word \small" are repla
ed by appropriate numeri
al values.The above shows that any set Bt formed by repla
ing xj with xj + hj (j = 1; : : : ; t), hj 2 P ,has supr 6=0 j bBt(r)j < �jBj. By the extremal property of B, there 
an be no 
hoi
e of the hj forwhi
h Bt � A. Roughly speaking it seems reasonable that this 
an only be the 
ase if someprogression xj + P has very small interse
tion with A, whi
h in turn for
es AÆ to 
ontain along AP. Turning this into a rigourous statement requires a 
ouple of further tri
ks, for whi
hwe refer the reader to [7℄. Details aside, we have 
ompleted the proof of Proposition 3 andhen
e of Theorem 3.Let us make a few remarks about the use of Theorem 1 here. We wanted to say somethingabout the set H of all h 2 ZN su
h that krhk � ", say, for all r 2 R. Su
h a set is usually
alled a Bohr neighbourhood and denoted by B(R; ") in honour of mathemati
ian and Danishfootball legend Harald Bohr. By Diri
hlet's argument su
h a set will 
ontain an AP of lengthat least "N1=jRj. Suppose, however, we know that R � Span(E). Then it is easy to see thatB (E; "=jEj) � B(R; ");so that B(R; ") 
ontains an AP of length at least "N1=jEj=jEj. If jEj is mu
h less than jRjthen this represents a signi�
ant improvement. Chang's theorem, as applied to the proof ofTheorem 2, put us in exa
tly su
h a situation. A similar situation arises in the proof [5℄ of10



Freiman's theorem for whi
h Theorem 1 was originally intended.7. Mis
ellaneous further remarks. To 
on
lude this arti
le we 
olle
t together a numberof items related to what we have dis
ussed.i. Chang's theorem is sharp. Let us begin by mentioning that Chang's theorem is in asense best possible. The following theorem from [8℄ illustrates this (the reader may 
are tore
all the de�nition of �-large):Theorem 3 (Chang's theorem is sharp) Let �; � be positive real numbers satisfying � �1=8, � � 1=32 and ��2 log(1=�) � logNlog logN : (14)Then there is a set A � ZN with jAj = b�N
 whi
h is �-large at R, where R is not 
ontainedin Span(E) for any set E with jEj � 2�12��2 log(1=�).ii. Sumsets in Fn2 . It is be
oming in
reasingly apparent that for many problems 
on
erningintegers it is advantageous to start by thinking about the 
orresponding problems in Fn2 , wherearguments are typi
ally mu
h 
leaner. Example of this are Freiman's theorem (
ompare [5℄with [17℄) and Roth's theorem on 3-term arithmeti
 progressions (here one should work inFn3 ). The same is true of the problem of lo
ating stru
tures in sumsets whi
h we 
onsideredin x6. Indeed, one 
an adapt the method of [7℄ as des
ribed in that se
tion to prove thefollowing result about sumsets in Fn2 .Theorem 4 Suppose that 
; Æ are real numbers with 
Æ � 1=pn, and that C;D are subsetsof Fn2 with 
ardinalities 
N and ÆN , where N = 2n. Then C + D 
ontains a translate ofsome subspa
e of Fn2 having dimension at least 
Æn=80.The details were given in [9℄ (3). In pla
e of Rudin's inequality one may use a 
elebratedinequality of Be
kner [2℄.iii. Upper bounds on progressions in sumsets. We have not yet said anything aboutwhether Theorem 2 is at all sharp. In other words, might it be the 
ase that if C;D arelarge subsets of ZN then C + D 
ontains an arithmeti
 progression of length substantiallylonger than eplogN? A 
urious feature of this problem, whi
h makes it di�erent from manyproblems in 
ombinatori
s, is that the extremal examples are neither random nor parti
ularlyregular. Indeed, if C;D are large random subsets of ZN then C +D = ZN , whereas if C;Dare arithmeti
 progressions then obviously C +D also 
ontains a long progression. What isneeded is something rather di�erent, and this was provided by Ruzsa [15℄.Proposition 4 (Ruzsa) For any " > 0 there is a set C � ZN with jCj > �12 � "�N butsu
h that C + C does not 
ontain an AP of length e(logN)2=3+" .11



Ruzsa 
alls his examples niveau sets. After learning about Proposition 4 one might thinkthat Theorem 2 is not far short of the truth. My opinion is that this is somewhat of anillusion. The reason for this is that Ruzsa's argument, when adapted to Fn2 , gives a boundwhi
h di�ers substantially from that implied by Theorem 4. Let us give the argument here,be
ause it takes a very simple form5.Proposition 5 (Niveau sets in Fn2 ) There is a set C � Fn2 with jCj > N=4, but su
h thatC + C does not 
ontain a translate of any subspa
e with dimension more than n�pn.Proof. Let C be the set of all ve
tors x 2 Fn2 with at least n=2 + pn=2 ones with respe
tto the standard basis. By the 
entral limit theorem the number of ones in a random ve
tor(x1; : : : ; xn) is roughly normally distributed with mean n=2 and standard deviation pn=2,and so for large n we have 
 � 1=4. Now any ve
tor x 2 C +C must have at least pn zeros.Using this fa
t, we shall prove that C +C meets all translates of all (n�bpn
)-dimensionalsubspa
es. Indeed, write d = bpn
 and suppose that U is a translate of some subspa
e ofdimension n = d. U 
an be written asU = fa0 + �1a1 + � � �+ �n�dan�d : �i 2 F2g ;where the ai are linearly independent. Write ai in 
omponent form as (a(j)i )nj=1. The 
olumnrank of the matrix (aij) is n � d, and hen
e so is the row rank. Without loss of generality,suppose that the �rst n� d rows (a(j)1 ; : : : ; a(j)n�d), j = 1; : : : ; n� d, are linearly independent.Then we 
an solve the n� d equationsa(j)0 + �1a(j)1 + � � �+ �n�da(j)n�d = 1for the �i, giving a ve
tor in U with no more than d zeros.iv. Spe
tral stru
ture of large sets. Chang's theorem tell's us nothing useful about thestru
ture of R, the set of points at whi
h j bA(r)j � �jAj, where A � ZN has 
ardinality bN=2
.It turns out that in fa
t nothing 
an be said over and above the trivial bound jRj � ��2
oming from Parseval's identity. A result in this dire
tion was proved in [8℄, but it later 
ameto the author's attention that better results follow from earlier approa
hes of de Leeuw,Kahane and Katznelson [6℄ and Nazarov [13℄. Nazarov's argument is ni
ely des
ribed in thearti
le [1℄, from whi
h one 
an extra
t the following result.Theorem 5 (Nazarov) Let �r, r 2 ZN, be positive reals satisfyingPr �2r � N=1600. Thenthere is a fun
tion f : ZN ! [0; 1℄ su
h that jf j =Px f(x) = N=2, and so thatj bf(r)j � �rjf jfor all r 2 ZN.5Ruzsa's paper is, by 
ontrast, something of a tour de for
e. This is be
ause in ZN one does not have thenotion of independen
e, and one is for
ed to work with the weaker notion of disso
iativity instead. In the
ontext of these 
onstru
tions, this presents a signi�
ant barrier.12



Roughly speaking, this beautiful result says that the only information one 
an infer 
on
erningthe large spe
trum of a large subset of ZN 
omes dire
tly from Parseval's theorem. 6v. L1-norms of exponential sums. Lemma 1 introdu
ed the notion of a set supporting afun
tion whose Fourier transform has small L1-norm. In this se
tion we mention a 
ouple ofopen problems relating to sets su
h that the Fourier transform of the set itself has small L1norm.Problem 1 (Strong Littlewood 
onje
ture) Let �1; : : : ; �N be distin
t positive integers.Is it true that 




 NXn=1 e(�n�)




1 � 




 NXn=1 e(n�)




1 ?It was shown that this holds if one repla
es � by �. This result, proved independently byKonyagin [11℄ and M
Gehee, Pigno and Smith [12℄, solved a famous 
onje
ture whi
h hadbeen known as Littlewood's 
onje
ture.Problem 2 (Chowla's 
osine problem) Let �1; : : : ; �N be distin
t positive integers. Howlarge 
an min�2[0;1) NXn=1 e(�n�)be?Improving an approa
h of Bourgain [3℄, Ruzsa [18℄ has shown that the minimum 
annot begreater than �e�
plogN . The truth may be more like �pN .Referen
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