Ruzsa's good modelling lemma

Ernie Croot

July 23, 2012

1 Introduction

I thought I would give here an intuitive discussion of a certain lemma of Ruzsa which played a central role in the proof of Freiman's Theorem. This lemma stated that:

Lemma. Suppose that A is a finite set of integers. Then, for any prime

$$N > 2|kA - kA|$$

there exists a subset $A' \subseteq A$ of size at least |A|/k which is Freiman k-isomorphic to a subset of $\mathbb{Z}/N\mathbb{Z}$.

Note that if A has "small doubling" then this subset of $\mathbb{Z}/N\mathbb{Z}$ will be "large" – it can be bounded from below in terms of C and in terms of k, provided N is chosen to be close to that lower bound 2|kA-kA|. To see this, let us suppose that N were at most 4|kA-kA| (we are on safe ground here because by Bertrand's postulate there is always a prime between x and 2x), and suppose that C = |A+A|/|A| is the doubling constant. Then, that subset of $\mathbb{Z}/N\mathbb{Z}$ has size |A'| > |A|/k, and therefore its density in $\mathbb{Z}/N\mathbb{Z}$ is at least

$$|A'|/N \ge |A|/4k|kA - kA| \ge 1/4kC^{2k}$$

where the last inequality follows from Ruzsa-Plunnecke-Petridis.

2 Proof of the lemma

The way I think of Ruzsa's proof is that one can produce lots and lots of Freiman k-homomorphisms ν from "large" subsets $A' \subseteq A$ to subsets of $\mathbb{Z}/N\mathbb{Z}$, each parameterized by some integer q that appears in intermediate steps of the proof, such that there are more choices for q than there are potential obstructions that keep any of the ν from being a Freiman k-isomorphism. So, by a counting argument one discovers that there exists a q, and therefore a map ν , which results in a Freiman k-isomorphism.

To prove Ruzsa's lemma, we start by letting p be any prime satisfying

$$p > k(MAXA - MINA).$$
 (1)

Then, for an integer $1 \le q \le p-1$ (which is necessarily coprime to p) we consider the mapping

$$\varphi_q : A \longrightarrow \mathbb{Z}/p\mathbb{Z}$$

$$a \longrightarrow qa \pmod{p}.$$

It is obvious that this is a Freiman k-homomorpism for all k, since it is a group homomorphism (which are necessarily Freiman k-homomorphisms for all k); however, what takes a little bit of work to see (though not much) is that, in fact, inequality (1) implies that

 φ_q is a Freiman k – isomorphism.

The trouble with working with the group $\mathbb{Z}/p\mathbb{Z}$ to prove Ruzsa's lemma is that it is potentially too large (much larger than 2|kA-kA|). So what we want to do is to compress the images of φ_q in $\mathbb{Z}/p\mathbb{Z}$ somehow; and, Ruzsa's idea was to map subsets of $\mathbb{Z}/p\mathbb{Z}$ down to subsets of $\mathbb{Z}/N\mathbb{Z}$, where N is any prime satisfying

$$N > 2|kA - kA|$$
.

Note that this N is potentially quite a bit smaller than p, which is good.

Given such an N we are now faced with a problem, which is that if we let ψ be any mapping from $\mathbb{Z}/p\mathbb{Z}$ down to $\mathbb{Z}/N\mathbb{Z}$, it cannot be an injective Freiman k-homomorphism, let alone an injective group homomorphism.

However, if we restrict ourselves to an integer interval I of residues mod p of width at most p/k, then on that interval we can pick ψ to be a Freiman k-homomorphism. We have to be a little careful here in describing this, due to the fact that residues mod p are not integers, so the mapping is tricky to define because of "type" issues: given I, choose a representation for the residues in I so that we get consecutive integers, say $I = \{x, x+1, x+2, ..., x+n\}$. Then let $\iota_I := \iota : I \to \{x, x+1, x+2, ..., x_n\} \subseteq \mathbb{Z}$ be the obvious inclusion mapping.

Using this mapping ι we can now define our mapping

$$\psi_I : I \longrightarrow J \subseteq \mathbb{Z}/N\mathbb{Z}$$
 $n \longrightarrow \iota(n) \pmod{N}.$

It is straightforward to check that this is a Freiman k-isomorphism.

To each $1 \leq q \leq p-1$ suppose we choose $I_q \subseteq \mathbb{Z}/p\mathbb{Z}$ to be any interval of width $\lfloor p/k \rfloor$ that contains the maximal number of elements of $\varphi_q(A)$. And then let $A'_q \subseteq A$ be those elements of A that map to this interval I_q . Clearly we will have

$$|A_q'| \ge |A|/k.$$

To prove Ruzsa's lemma, then, we just need to focus on the following claim.

Claim. There exists $1 \leq q \leq p-1$, such that then the composition $\psi_{I_q} \circ \varphi_q$ is a Freiman k-isomorphism when this mapping is restricted to A'_q (and the image is restricted to the appropriate subset of $\mathbb{Z}/N\mathbb{Z}$).

Let $\nu_q := \psi_{I_q} \circ \varphi_q|_{A'_q}$ be one of these restricted mappings. Note that regardless of what q we pick, ν_q is always a Freiman k-homomorphism from A'_q into $\mathbb{Z}/N\mathbb{Z}$; however, only special q are "good", meaning that they result in a k-isomorphism.

Now, if q is "bad" then it means that there exist elements

$$a_1, ..., a_k, a'_1, ..., a'_k \in A'_a,$$

such that

$$a_1 + \cdots + a_k \neq a'_1 + \cdots + a'_k$$

while

$$\nu_q(a_1) + \dots + \nu_q(a_k) \equiv \nu_q(a_1') + \dots + \nu_q(a_k') \pmod{N}.$$

This last statement implies that

$$\psi_{I_a}(b_1) + \dots + \psi_{I_a}(b_k) \equiv \psi_{I_a}(b'_1) + \dots + \psi_{I_a}(b'_k) \pmod{N},$$

where $b_i \equiv qa_i \pmod{p}$ and all $b_i' \equiv qa_i' \pmod{p}$, where $b_i, b_i' \in I_q$. Since we are already working mod N we can just remove these ψ_{I_q} 's and conclude that

$$b_1 + \dots + b_k \equiv b_1' + \dots + b_k' \pmod{N}.$$

So,

$$b_1 + \cdots + b_k - b'_1 - \cdots - b'_k = Nm$$
, where $1 \le m \le p/N$

(Without loss we can assume that this sum of b_i 's exceeds the sum of b'_i 's.) Upon considering this last equation mod p, and upon writing the b_i and b'_i back in terms of a_i and a'_i , we find that it implies that

$$(Nm)^{-1}(a_1 + \dots + a_k - a'_1 - \dots - a'_k) \equiv q^{-1} \pmod{p}.$$

Since this difference of sums of a_i 's and a_i 's is contained in kA - kA, and since there are at most p/N choices for m it follows that there can be at most (p/N)|kA-kA| "bad q". This number is smaller than p-1 if N>2|kA-kA|; and so, assuming N is this large there are more choices for q than there are "bad q". It follows that one of the ν_q 's is a Freiman k-isomorphism out of A_q , thereby proving the lemma.