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1 Introduction

I thought 1 would give here an intuitive discussion of a certain lemma of
Ruzsa which played a central role in the proof of Freiman’s Theorem. This
lemma stated that:

Lemma. Suppose that A is a finite set of integers. Then, for any prime
N > 2|kA — kA,

there exists a subset A" C A of size at least |A|/k which is Freiman k-
isomorphic to a subset of Z/NZ.

Note that if A has “small doubling” then this subset of Z/NZ will be
“large” — it can be bounded from below in terms of C' and in terms of k,
provided N is chosen to be close to that lower bound 2|kA — kA|. To see
this, let us suppose that N were at most 4|/kA — kA| (we are on safe ground
here because by Bertrand’s postulate there is always a prime between x and
2x), and suppose that C' = |A + A|/|A] is the doubling constant. Then, that
subset of Z/NZ has size |A'| > |A|/k, and therefore its density in Z/NZ is

at least

|A'|/N > |A|/4k|kA — kEA] > 1/4kC?*,

where the last inequality follows from Ruzsa-Plunnecke-Petridis.



2 Proof of the lemma

The way I think of Ruzsa’s proof is that one can produce lots and lots of
Freiman k-homomorphisms v from “large” subsets A” C A to subsets of
Z/NZ, each parameterized by some integer ¢ that appears in intermediate
steps of the proof, such that there are more choices for ¢ than there are poten-
tial obstructions that keep any of the v from being a Freiman k-isomorphism.
So, by a counting argument one discovers that there exists a ¢, and therefore
a map v, which results in a Freiman k-isomorphism.
To prove Ruzsa’s lemma, we start by letting p be any prime satisfying

p > k(MAXA — MINA). (1)

Then, for an integer 1 < ¢ < p — 1 (which is necessarily coprime to p) we
consider the mapping

pg o A — Z/pZ
a — qa (mod p).

It is obvious that this is a Freiman k-homomorpism for all k, since it is a
group homomorphism (which are necessarily Freiman k-homomorphisms for
all k); however, what takes a little bit of work to see (though not much) is
that, in fact, inequality (1) implies that

©q 1s a Freiman k — isomorphism.

The trouble with working with the group Z/pZ to prove Ruzsa’s lemma
is that it is potentially too large (much larger than 2|k A — kA|). So what we
want to do is to compress the images of ¢, in Z/pZ somehow; and, Ruzsa’s
idea was to map subsets of Z/pZ down to subsets of Z/NZ, where N is any
prime satisfying

N > 2|kA —EA|.

Note that this N is potentially quite a bit smaller than p, which is good.
Given such an N we are now faced with a problem, which is that if we

let ¢ be any mapping from Z/pZ down to Z/NZ, it cannot be an injec-
tive Freiman k-homomorphism, let alone an injective group homomorphism.



However, if we restrict ourselves to an integer interval I of residues mod p of
width at most p/k, then on that interval we can pick ¢ to be a Freiman k-
homomorphism. We have to be a little careful here in descrbing this, due to
the fact that residues mod p are not integers, so the mapping is tricky to de-
fine because of “type” issues: given I, choose a representation for the residues
in I so that we get consecutive integers, say I = {z,z + 1,z +2,...,x + n}.
Then let ¢y :=¢v: I — {z,x+ 1,2+ 2,...,2,} C Z be the obvious inclusion
mapping.
Using this mapping ¢ we can now define our mapping

Yr 1 — JCZ/NZ
n — «(n) (mod N).

It is straightforward to check that this is a Freiman k-isomorphism.

To each 1 < ¢ < p— 1 suppose we choose I, C Z/pZ to be any interval of
width |p/k] that contains the maximal number of elements of p,(A). And
then let Ag C A be those elements of A that map to this interval I,. Clearly
we will have

[Aql = [Al/E.

To prove Ruzsa’s lemma, then, we just need to focus on the following
claim.

Claim. There exists 1 < ¢ < p— 1, such that then the composition v, o ¢,
is a Freiman k-isomorphism when this mapping is restricted to A (and the
image is restricted to the apporpriate subset of Z/NZ).

Let v, := 47 oy,|, be one of these restricted mappings. Note that
q q a1 A
q

regardless of what ¢ we pick, v, is always a Freiman k-homomorphism from
A} into Z/NZ; however, only special ¢ are “good”, meaning that they result
in a k-isomorphism.

Now, if ¢ is “bad” then it means that there exist elements
A1y ooy Qg O, oy @), €A,

such that
ay+-tap # aj+--+ap,



while
vylar) -+ vg(ar) = vy(a) + -+ vy(af)  (mod N).
This last statement implies that

Yr, (b)) + -+, (b)) = oy, (0)) + -+ + ¥, (b)) (mod N),

where b; = ga; (mod p) and all b = ga} (mod p), where b;,b; € I,. Since
we are already working mod N we can just remove these 17, ’s and conclude
that

by+--+b, = b +---+0, (mod N).

So,
by +---+b,—by—--—b, = Nm, where 1 <m < p/N

(Without loss we can assume that this sum of b;’s exceeds the sum of b;’s.)
Upon considering this last equation mod p, and upon writing the b; and
b, back in terms of a; and a}, we find that it implies that

(Nm)™May + -+ ay—d = —a;) = ¢”' (mod p).

Since this difference of sums of a;’s and a;’s is contained in kA — kA, and
since there are at most p/N choices for m it follows that there can be at most
(p/N)|kA—FKA| “bad ¢”. This number is smaller than p—1if N > 2|k A—kA];
and so, assuming NV is this large there are more choices for ¢ than there are
“bad ¢”. It follows that one of the v,’s is a Freiman k-isomorphism out of
Ay, thereby proving the lemma.



