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1 Introduction

I thought I would give here an intuitive discussion of a certain lemma of
Ruzsa which played a central role in the proof of Freiman’s Theorem. This
lemma stated that:

Lemma. Suppose that A is a finite set of integers. Then, for any prime

N > 2|kA− kA|,

there exists a subset A′ ⊆ A of size at least |A|/k which is Freiman k-
isomorphic to a subset of Z/NZ.

Note that if A has “small doubling” then this subset of Z/NZ will be
“large” – it can be bounded from below in terms of C and in terms of k,
provided N is chosen to be close to that lower bound 2|kA − kA|. To see
this, let us suppose that N were at most 4|kA− kA| (we are on safe ground
here because by Bertrand’s postulate there is always a prime between x and
2x), and suppose that C = |A+A|/|A| is the doubling constant. Then, that
subset of Z/NZ has size |A′| > |A|/k, and therefore its density in Z/NZ is
at least

|A′|/N ≥ |A|/4k|kA− kA| ≥ 1/4kC2k,

where the last inequality follows from Ruzsa-Plunnecke-Petridis.
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2 Proof of the lemma

The way I think of Ruzsa’s proof is that one can produce lots and lots of
Freiman k-homomorphisms ν from “large” subsets A′ ⊆ A to subsets of
Z/NZ, each parameterized by some integer q that appears in intermediate
steps of the proof, such that there are more choices for q than there are poten-
tial obstructions that keep any of the ν from being a Freiman k-isomorphism.
So, by a counting argument one discovers that there exists a q, and therefore
a map ν, which results in a Freiman k-isomorphism.

To prove Ruzsa’s lemma, we start by letting p be any prime satisfying

p > k(MAXA − MINA). (1)

Then, for an integer 1 ≤ q ≤ p − 1 (which is necessarily coprime to p) we
consider the mapping

ϕq : A → Z/pZ

a → qa (mod p).

It is obvious that this is a Freiman k-homomorpism for all k, since it is a
group homomorphism (which are necessarily Freiman k-homomorphisms for
all k); however, what takes a little bit of work to see (though not much) is
that, in fact, inequality (1) implies that

ϕq is a Freiman k − isomorphism.

The trouble with working with the group Z/pZ to prove Ruzsa’s lemma
is that it is potentially too large (much larger than 2|kA− kA|). So what we
want to do is to compress the images of ϕq in Z/pZ somehow; and, Ruzsa’s
idea was to map subsets of Z/pZ down to subsets of Z/NZ, where N is any
prime satisfying

N > 2|kA− kA|.

Note that this N is potentially quite a bit smaller than p, which is good.

Given such an N we are now faced with a problem, which is that if we
let ψ be any mapping from Z/pZ down to Z/NZ, it cannot be an injec-
tive Freiman k-homomorphism, let alone an injective group homomorphism.
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However, if we restrict ourselves to an integer interval I of residues mod p of
width at most p/k, then on that interval we can pick ψ to be a Freiman k-
homomorphism. We have to be a little careful here in descrbing this, due to
the fact that residues mod p are not integers, so the mapping is tricky to de-
fine because of “type” issues: given I, choose a representation for the residues
in I so that we get consecutive integers, say I = {x, x + 1, x + 2, ..., x + n}.
Then let ιI := ι : I → {x, x + 1, x + 2, ..., xn} ⊆ Z be the obvious inclusion
mapping.

Using this mapping ι we can now define our mapping

ψI : I → J ⊆ Z/NZ

n → ι(n) (mod N).

It is straightforward to check that this is a Freiman k-isomorphism.

To each 1 ≤ q ≤ p− 1 suppose we choose Iq ⊆ Z/pZ to be any interval of
width ⌊p/k⌋ that contains the maximal number of elements of ϕq(A). And
then let A′

q ⊆ A be those elements of A that map to this interval Iq. Clearly
we will have

|A′

q| ≥ |A|/k.

To prove Ruzsa’s lemma, then, we just need to focus on the following
claim.

Claim. There exists 1 ≤ q ≤ p− 1, such that then the composition ψIq
◦ ϕq

is a Freiman k-isomorphism when this mapping is restricted to A′

q (and the
image is restricted to the apporpriate subset of Z/NZ).

Let νq := ψIq
◦ ϕq

∣

∣

A′

q

be one of these restricted mappings. Note that

regardless of what q we pick, νq is always a Freiman k-homomorphism from
A′

q into Z/NZ; however, only special q are “good”, meaning that they result
in a k-isomorphism.

Now, if q is “bad” then it means that there exist elements

a1, ..., ak, a
′

1
, ..., a′k ∈ A′

q,

such that
a1 + · · · + ak 6= a′

1
+ · · · + a′k,
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while

νq(a1) + · · · + νq(ak) ≡ νq(a
′

1
) + · · · + νq(a

′

k) (mod N).

This last statement implies that

ψIq
(b1) + · · · + ψIq

(bk) ≡ ψIq
(b′

1
) + · · · + ψIq

(b′k) (mod N),

where bi ≡ qai (mod p) and all b′i ≡ qa′i (mod p), where bi, b
′

i ∈ Iq. Since
we are already working mod N we can just remove these ψIq

’s and conclude
that

b1 + · · · + bk ≡ b′
1
+ · · · + b′k (mod N).

So,
b1 + · · · + bk − b′

1
− · · · − b′k = Nm, where 1 ≤ m ≤ p/N

(Without loss we can assume that this sum of bi’s exceeds the sum of b′i’s.)
Upon considering this last equation mod p, and upon writing the bi and

b′i back in terms of ai and a′i, we find that it implies that

(Nm)−1(a1 + · · · + ak − a′
1
− · · · − a′k) ≡ q−1 (mod p).

Since this difference of sums of ai’s and a′i’s is contained in kA− kA, and
since there are at most p/N choices for m it follows that there can be at most
(p/N)|kA−kA| “bad q”. This number is smaller than p−1 if N > 2|kA−kA|;
and so, assuming N is this large there are more choices for q than there are
“bad q”. It follows that one of the νq’s is a Freiman k-isomorphism out of
A′

q, thereby proving the lemma.
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