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Abstract

In a multi-item inventory system, given the order cycle lengths
and unit volumes of the items, the determination of the replenishment
times (i.e. “cycle offsets”) of items, so as to minimize the resources
needed to store the items, is known as the inventory cycle offsetting
problem. In this paper we show that so long as the cycle times and
inventory unit volumes satisfy certain mild constraints, there is an
assignment of replenishment times so as to keep the resource require-
ments near the minimum that is theoretically possible for the time
interval [0, CK

1 Q), where C1 > 1 is a certain costant, K is the number
of items, and Q is the maximum of the cycle lengths. We further prove
that there is a certain constant C2 > C1 > 1 so that with high prob-
ability, the resource requirements for the time interval [0, CK

2 Q] are

1



near the worst that they could be, at least when the cycle lengths and
inventory volumes are chosen randomly from certain intervals with
uniform distributions. Determining the best constants C1 and C2,
given certain constraints, seems to be a very difficult problem, and is
not something that we work out in this paper; nonetheless, at the end
of the paper we present some computer experiments that suggest how
C1 depends on certain problem parameters (our experiments tell us
nothing about C2).

1 Introduction

Consider a multi item inventory system with resource capacity constraints.
Assume that, for each item, the demand is constant and known, and the lead
time is constant. The main constraint requires that the resource occupied
at any time along a finite or infinite time horizon does not exceed a given
capacity. In an inventory system, such a constraint can be imposed by the
maximum number of dollars permitted to be tied up in the inventory, or by
the maximum available warehouse space. The decisions to be made are the
timing of the individual product replenishment times, and the quantity of
each product to be delivered daily. In the literature, this problem has been
addressed and under study for a long time (see, e.g., Hadley and Whitin [?],
Johnson and Montgomery [?], Naddor [?], Tersine [?], Zipkin [?]).

In the unconstrained case, the problem is separable and can be solved for
each item independently. However, when there exists a global resource capac-
ity constraint, the problem becomes extremely hard. Different approaches
have been proposed in the literature. The very first approach is called the
Lagrangian multiplier approach (cf. Hadley and Whitin [?], Parsons 1966
[?], Johnson and Montgomery [?]). In this approach, only the order quanti-
ties are decision variables. Lagrangian multipliers are used to minimize the
overall ordering cost and inventory holding cost, under the resource capacity
constraint. This approach does not consider the cycle offsetting effect at all,
i.e. the selection of replenishment times to minimize the maximum resource
occupied along the time horizon. Therefore, in this approach, it is automati-
cally assumed that there exist times along the horizon, such that all the items
are replenished simultaneously. A second approach is called the fixed cycle
approach (cf. Krone [?], Parsons 1965 [?], Homer [?], Page and Paul [?],
Zoller [?], Goyal 1978 [?]), in which all the items share the same cycle. The
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decisions are to choose the fixed cycle length and the replenishment times
for items. In Page and Paul [?], it was shown that the fixed cycle approach
will always generate better space utilization (when the resource is warehouse
space) than the Lagrangian multiplier approach. However, in terms of total
cost, this approach is not necessarily better. In Rosenblatt and Rothblum
[?], the fixed cycle approach was generalized to incorporate the case where
the resource capacity is treated as a decision variable, with a general con-
vex cost function of resource capacity utilization. By considering optimality
conditions, the authors proposed an efficient algorithm to solve the problem
within a fixed cycle framework.

In Rosenblatt [?], a comparison was made between the Lagrange multi-
pliers and the fixed cycle approach, and it was shown that none of them is
dominant. In Gallego et al. [?], it was shown the worst case performance of
the Lagragian multiplier approach can be up to one hundred percent worse
than the optimal solution. In Anily [?], it was shown the worst case per-
formance of the fixed cycle approach can be arbitrarily bad. Thus, not sur-
prisingly, a third approach has received a lot of attention, which is known
as the basic cycle approach (cf. Goyal 1973 [?], Silver [?], Goyal and Bel-
ton [?], Kapsi and Rosenblatt [?]). In this approach, a basic cycle length is
determined. The cycle of each item is a multiple of this basic cycle length.
By this approach, the setup cost can be reduced due to the benefits of joint
replenishment. The decision variables in this approach are the basic cycle
length and the integer multiples of the basic cycle length. When the basic
cycle length is given, the problem can be regarded as a partitioning problem
and solved efficiently in most practical cases (cf. Chakravarty et al. 1983
[?], Chakravarty et al. 1985 [?]). In Gallego et al. [?], a variant of the basic
cycle approach was proposed, where the cycle lengths of items are set to be
power of two times of basic cycle length. In Hariga and Jackson [?], a similar
approach was discussed.

In most of the basic cycle approach papers, there is very little discussion
of the cycle offsetting problem; it is usually assumed that there exists times
along the horizon, such that the overall resource occupied is just the sum
of the maximum resource occupations of individual items. This may be due
to the difficulty of solving the cycle offsetting problem as a subproblem. In
Gallego et al. [?], it was shown that the cycle offsetting problem is NP-
complete. In Goyal 1978 [?], a heuristic was proposed to incorporate the
cycle offsetting with a fixed cycle approach. Then in Hall [?], the author
considered the separate replenishment policy for two items, where the cycle
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time of one item is defined as the basic cycle, and the other item’s cycle length
is an integer multiple of this basic cycle. The optimal offsetting solution for
this special case was derived. Later in Murphy et al. [?], the general two
item cycle offsetting problem was solved. By using modular arithmetic, a
closed form of the optimal solution was obtained. Furthermore, the authors
also showed that cycle offsetting can increase resource utilization by as much
as fifty percent, which implies that it is very necessary to consider the cycle
offsetting effect when resources are limited. To conclude, in previous research
on the inventory cycle offsetting problem, the two item case was solved, while
for the case of large number of items, only a few heuristics exist.

In this paper we will prove a certain “coarse threshold” result, which says
the following

• if the time horizon is at most CK
1 Q (for a certain C1 > 1), where Q

is the maximum of the cycle lengths q1, ..., qK , and if the volumes di and
cycle lengths qi satisfy some fairly mild and natural constraints, then there is
always a way to schedule the deliveries so as to keep the resources constraints
close to the minimum that is theoretically possible; and,

• for most instances of the inventory capacity problem of a certain type
(where the cycle lengths qi and volumes di are chosen randomly from uniform
distributions over certain intervals), if the time horizon is larger than CK

2 Q
for a certain constant C2 > C1 > 1, then with high probability, no matter
what cycle offsetting is used, the resource requirements will be near the worst
that is possible.

Notice that in the first bullet there is no randomization or probability in-
volved – randomization only appears when working with the upper bound
CK

2 Q.

One would like to be able to prove that MN has a “sharp threshold”,
which would mean that the resource requirements are near the smallest that is
theoretically possible for N ≤ (C−o(1))KQ, while the resource requirements
are near the largest they could be when N ≥ (C + o(1))KQ. We strongly
believe, however, that this is not the case – that is, we believe MN does not
have a sharp threshold. This can perhaps be proved using the methods in
our paper, though we have not bothered to do so.

Although we do not not give good estimates for these constants C1 and
C2, as this is a very technical and delicate mathematical problem, in section 7
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we experimentally determine (heuristic) lower bounds for C1, assuming that
the cycle times and inventory volumes are randomly selected according to
uniform distributions over certain intervals.

2 The Inventory Cycle Offsetting Problem (ICP)

2.1 Problem Statement

The statement of the inventory cycle offsetting problem is simple: Consider
multiple items in joint storage, whose inventory cycles are given. A resource
is occupied or consumed when items are stored. The resource can be the
amount of dollars invested in inventory, or the warehouse space, etc. The de-
cision problem is to decide the replenishment times of items, to minimize the
overall resource utilization along a given time horizon (finite or infinite). In
this problem, we assume that for each time period, the demand for each item
is constant and known. We also assume that the replenishment is immediate
(this assumption can be simply extended to the case of constant lead time).
To describe the mathematical model, we introduce the following notations:

K : the number of items

k : index for items

dk : volume of a unit of item k consumed or occupied in unit time

qk : inventory cycle of item k

δk : replenishment time for item k (decision variable), 0 ≤ δk < qk

Within a basic cycle framework (cf. Murphy et al. [?]), we can assume qk

and δk are integers. The parameter dk is an estimation of resource occupation
for item k consumed in unit time. It can be regarded as the multiplication
of demand rate and the consumption of resource for each unit of item k. For
example, let the resource be warehouse space. The demand rate of item k is
2 units per day. And each unit has a volume of 4 cubic feet. Then the dk

value will be 2 × 4 = 8.
Define the following function for each item k:

fk(t) = qk − t ∀0 ≤ t < qk. (1)

Then, we periodize by defining for each integer t,

fk(t) = fk(t + hqk),
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where h is the unique integer such that 0 ≤ t+hqk < qk. Thus, the inventory
cycle offsetting problem can be expressed as follows:

Efficiently determine

MN(q1, ..., qK; d1, ..., dK) := Min
δ1,δ2,...,δK

Max
0≤t≤N−1

t∈Z

K
∑

k=1

dkfk(t + δk),

and determine a choice for δ1, ..., δK where this Minimum-Maximum is at-
tained.

3 Summary of Results

3.1 Basic Bounds

Our first observation is the following theoretical lower bound.

Theorem 1 For L = lcm(q1, ..., qK) we have that

ML(q1, ..., qK; d1, ..., dK) ≥ d1(q1 + 1) + · · ·+ dK(qK + 1)

2
.

Proof. Note that the average value of the periodic function dkfk(t + δk) in
a full cycle is

dk(1 + · · ·+ qk)

qk

=
dk(qk + 1)

2
.

Since qk divides L, we can easily see that the average value of S(t; δ1, ..., δK)
over 0 ≤ t ≤ L − 1 is

d1(q1 + 1) + · · · + dK(qK + 1)

2
.

Therefore, the resource capacity should be at least this big, no matter what
phases δ1, ..., δK are chosen. This is just what the theorem is claiming. �

As the quantity appearing on the right-hand-side of this theorem comes
up many times, we give it a name: Let

B = B(q1, ..., qK ; d1, ..., dK) :=
d1(q1 + 1) + · · · + dK(qK + 1)

2
. (2)

6



By a slighly longer argument we can further prove that MN approximately
satisfies such a bound, where N is a small factor of the largest qk; specifically,
we have:

Theorem 2 Suppose that

N ≥ h Max
1≤k≤K

qk, with h ≥ 2.

Then,

MN (q1, ..., qK; d1, ..., dK) ≥
(

1 − 2

h

)

B,

where B is as in (2).

Proof. For each k = 1, ..., K write

N = skqk + rk, where 0 ≤ rk ≤ qk − 1.

We observe that sk = [N/qk] ≥ h, and therefore for any δk,

1

N

N−1
∑

n=0

dkfk(n + δk) =
1

skqk

skqk
∑

n=0

dkfk(n + δk) + Ek =
dk(qk + 1)

2
+ Ek.

where the error Ek satisfies

Ek =

(

1

N
− 1

skqk

) skqk−1
∑

n=0

dkfk(n + δk) +
1

N

N−1
∑

n=skqk

dkfk(n + δk).

The first term in this error Ek is smaller than

rkdksk(1 + 2 + · · ·+ qk − 1)

Nskqk
<

dk(qk + 1)

2sk
≤ dk(qk + 1)

2h
.

The second term in the error Ek is smaller than

dk(1 + 2 + · · ·+ qk)

qksk

=
dk(qk + 1)

2sk

≤ dk(qk + 1)

2h
.
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Putting these errors together we deduce that

|Ek| <
dk(qk + 1)

h
;

and so, it follows that for all δ1, ..., δK,

∣

∣

∣
B − 1

N

N
∑

n=0

K
∑

k=1

dkfk(n + δk)
∣

∣

∣
<

2B

h
.

The theorem follows because from this we know that the maximum value of
this double sum is at least its average value, which is at least

B − 2B

h
=

(

1 − 2

h

)

B.

�

So, from these simple results we know that MN must be at least half its
largest possible value (which is d1q1 + · · · + dKqK), even when N is not too
large; for example, we have that if N > 40 Maxk qk, then

0.45(d1(q1 + 1) + · · ·+ dK(qK + 1)) < MN ≤ d1q1 + · · · + dKqK.

As mentioned in the previous sections, this leads one to ask: For what
values of q1, ..., qK and d1, ..., dK and N , can we guarantee that MN is close
to B? And, for which values of parameters is MN near to d1q1 + · · ·+ dKqK ,
the worst it could be?

3.2 Statments of Main Results

In the next two sections we will prove the following two theorems which
partially address these questions.

Theorem 3 For every δ ≥ ε > 0, there exists a constant C1 = C1(ε, δ) > 0,
such that the following holds for K > K0(ε, δ) and Q > Q0(ε, δ): Let

1 ≤ q1, ..., qK ≤ Q := Max
i

qi
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be any set of integer phases, and let

0 ≤ d1, d2, ..., dK ≤ D

be any set of unit volumes satisfying

B(q1, ..., qK; d1, ..., dK) ≥ δKQD. (3)

(See the remark below as to why this bound on B is a natural assumption.)
Then,

MN (q1, ..., qK; d1, ..., dK) ≤ (1 + ε)B, for all N ≤ CK
1 Q. (4)

Although our proof does not give good lower bounds for the best constant
C1 here, it at least gives us that we may take it to be any positive real number
smaller than

exp(ε2δ2/2).

Remark. Observe that we are asserting that the conclusion holds for any
set of integer phases q1, ..., qK – there is no randomization at all. The proof,
however, makes use of a probabilistic argument.

Also observe that the requirement (3) is fairly mild, when viewed through
the appropriate lens: Pretend that the qi and di are independent random
variables that are uniformly distributed over {1, 2, ..., Q} and [0, D], respec-
tively. Then, (3) holds with probability 1− o(1) (here, the o(1) tends to 0 as
K → ∞); and, in fact, it holds with δ = 1/8. Actually, we have something
even better, namely that (3) will hold for some value of δ > 0 with proba-
bility 1 − o(1) just so long as the values E(q1) and E(d1) are more than a
constant multiple of Q and D, respectively, regardless of whether or not the
distributions are uniform.

Theorem 4 The following holds for Q sufficiently large: If

K0 < K ≤ log(Q/33)

6 log(41)
, for a certain K0 > 0,

and if we

• select integers 1 ≤ q1, ..., qK ≤ Q independently at random from uniform
distributions, and
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• select 0 < d1, ..., dK ≤ D at random (they need not be integers) from
uniform distributions (independent of the values of the qi and from the other
di),

then, with probability at least 90%,

MN(q1, ..., qK; d1, ..., dK) ≥ 0.90(d1q1 + · · ·+dkqk), for all N ≥ CK
2 Q. (5)

Although our proof does not give us precise upper bounds on the size of
this constant C2, it at least shows that for K sufficiently large, we may take

C2 < 5.22 × 108,

which is clearly much too large to be useful in practical problems.

Remark. We could give a more precise theorem here, where the two num-
bers 90% and 0.9 are replaced with numbers arbitrarily close to 1, and
where the constant C2 depends on these numbers; however, the theorem
as it is presently stated is good enough to describe the rough behavior of
MN(q1, ..., qK; d1, ..., dK).

Taken together, these two theorems, along with Theorem 2, tell us that
MN “typically” undergoes a phase transition: if

Q � N ≤ CK
1 Q, (6)

then MN is near B, roughly the smallest it could be; and, if

CK
2 Q ≤ N, (7)

then MN is near d1q1 + · · ·+ dKqK , which is the largest it could be.

Left unanswered is the question of just what the optimal constants C1

and C2 are. The methods that go into the proofs of Theorems 3 and 4
l are too weak to answer this question (especially Theorem 4, where we
only know that C2 < 5.22 × 108); however, if one is interested in knowing
this dependence for practical considerations (actually solving instances of
ICP computationally), and if one does not care about being mathematically
certain of exactly what this dependence is, then one can perform some large
computations on random data sets to determine the dependence. In section 7
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we present some computer experiments which give heuristic lower bounds for
C1 if the numbers q1, ..., qK and d1, ..., dK are randomly chosen over certain
intervals with the uniform distribution. Our computations tell us nothing
about C2.

One final point worth making, before we close this section and proceed
with the proofs of the above theorems, is that the requirement K � log Q
in Theorem 4 can probably be substantially weakened; however, it cannot
be weakened to something like K � Q, because if K is near cQ, then there
will likely be lots of pairs of the qi that are equal, and when that occurs it
is possible to choose the phases δ1, ..., δK so as to keep MN from ever being
near its largest value d1q1 + · · · + dKqK.

4 Proof of Theorem 3

First, we will need the following theorem of Hoeffding (see [?] or [?, Theorem
5.7]):

Proposition 1 Suppose that z1, ..., zr are independent real random variables
with |zi| ≤ 1. Let µ = E(z1 + · · ·+ zr), and let Σ = z1 + · · · + zr. Then,

P(|Σ − µ| > rt) ≤ 2 exp(−rt2/2).

The way we use this proposition is as follows: Given q1, ..., qK, and
d1, ..., dK, select the phases δ1, ..., δK independently and uniformly at ran-
dom with 0 ≤ δi ≤ qi − 1. We wish to give a lower bound for the probability
that

for all t = 0, ..., N − 1, d1f1(t + δ1) + · · ·+ dKfK(t + δK) ≤ (1 + ε)B.

We can regard this as a question about the N events E0, ..., EN−1, where Ei

is the event that

d1f1(i + δ1) + · · ·+ dKfK(i + δK) ≤ (1 + ε)B.

An especially important property of these events Ei is that they enjoy
a “weak continuity” property, and this property is what leads to the factor
of Q appearing in (4) for the range CK

1 Q. This weak continuity property is
given by the following lemma:
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Lemma 1 Let

S(t; δ1, ..., δK) =
K
∑

k=1

dkfk(t + δk).

Then, we have that

S(t − u; δ1, ..., δK) ≤ u
K
∑

k=1

dk + S(t; δ1, ..., δK).

Proof. The proof amounts to observing that

fk(t − u; δ1, ..., δK) ≤ fk(t; δ1, ..., δK) + u,

and then plugging in such inequalities to the sum S(t − u; δ1, ..., δK). �

From this lemma we can deduce that in order for E0, ..., EN−1 to hold, it
suffices that a certain shorter list of events F1, ..., FH all hold, where

H = 1 + [3N/εδQ]

and Fj is the event

|S([εδjQ/3]; δ1, ..., δK) − B| < εB/2.

To see that this implies that E0, ..., EN−1 all hold, suppose that 0 ≤ t ≤ N−1.
Then,

[εδ(j − 1)Q/3] < t ≤ [εδjQ/3], for some 1 ≤ j ≤ H.

Now, from Lemma 1 we deduce that

S(t; δ1, ..., δK) ≤ S([εδjQ/3]; δ1, ..., δK) + (1 + εδQ/3)

K
∑

i=1

di

≤ B(1 + ε/2) + (1 + εδQ/3)DK

≤ B(1 + ε/2) + DK + εδQDK/3

≤ B(1 + ε/2) + DK + εB/3

< B(1 + ε),

for Q > Q0(ε, δ) and K > K0(ε, δ).
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Now, since Fi ⊆ Ei, we have

P(E0 ∩ · · · ∩ EN−1) ≥ P(F1 ∩ · · · ∩ FH) ≥ 1 −
H
∑

i=1

P(Fi).

In order to give a lower bound on this last quantity, we must bound P(Fi)
from below. To do this, given that we already know d1, ..., dK, q1, ..., qK, but
that we let δ1, ..., δK vary, we define the random variables Σ0, ..., ΣN−1 by the
relation

Σi = (d1/QD)f1(i + δ1) + · · ·+ (dK/QD)fK(i + δK).

Each of these Σi is a sum of independent random variables, say

Σi = X1 + · · ·+ XK, were Xk = (dk/QD)fk(i + δk),

and by dividng through by QD we have forced them to be bounded from
above by 1, so that Hoeffding applies; indeed, we have that

P(Fi) = P(|B/QD − Σi| ≤ εB/QD) > 1 − 2 exp(−ε2B2/2KQ2D2).

So,
P(E0 ∩ · · · ∩ EN−1) > 1 − 2H exp(−ε2B2/2KQ2D2).

This probability is positive, provided

2H < exp(ε2B2/2KQ2D2).

Using (3) we see that this holds provided

2H < exp(ε2δ2K/2).

Using the fact that H = 1 + [3NK/εδQ], we have that our inequality holds
provided

N <
εδQ

6
exp(ε2δ2K/2) − εδQ

3
.

This right-most-quantity is bounded from above by CK
1 Q for large K and for

some C1 that depends only on ε and δ; in fact, for large K we may take C1

to be any constant exceeding

lim
K→∞

(

εδ

6
exp(ε2δ2K/2) − εδ

3

)1/K

= exp(ε2δ2/2).

Our theorem is proved. �
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5 Proof of Theorem 4

5.1 An Approximate Chinese Remainder Theorem

The time horizons N around where MN is “large” turns out to be related to
the parameter

s = s(q1, ..., qK ; R) := Min
(m1,...,mK )∈ZK

|mk|≤R

(m1,...,mK)6=(0,...,0)

∣

∣

∣

∣

∣

∣

m1

q1
+ · · · + mK

qK

∣

∣

∣

∣

∣

∣
, (8)

where ||x|| denotes the distance from x to the nearest integer.
The connection between this parameter s and the number MN is through

an approximate version of the Chinese Remainder Theorem. Basically, we
will use some elementary harmonic analysis to prove that given ε > 0, for a
certain R > 0, if s is “not too small” (in a way that depends on ε), then for
N “not too large”, for any choice of intervals (which amounts to a choice of
a1, ..., aK)

I1 := [a1−εq1, a1+εq1], I2 := [a2−εq2, a2+εq2], ..., IK := [aK−εqK , aK+εqK ],

there exists a number 0 ≤ n ≤ N − 1 such that for “most” j = 1, ..., K we
will have n is congruent mod qj to some number in the interval Ij. If this
is the case, then no matter how we choose phases δ1, ..., δK, it will turn out
that MN (q1, ..., qK ; δ1, ..., δK) is “large”.

If these intervals had ε = 0, then they would just be the points I1 =
{a1}, ..., IK = {aK}. If the q1, ..., qK were coprime, then by the Chinese
remainder theorem there would exist n ≤ lcm(q1, ..., qK) satisfying n ≡ ai

(mod qi); therefore, n lies in the interval Ii mod qi. In our approximate
version of the Chinese remainder theorem we do not need so strong a re-
quirement as that the q1, ..., qK are coprime, as it turns out that for “most”
choices of q1, ..., qK ≤ Q, the parameter s is “not too small”, at least when

1 ≤ K � log Q.

Furthermore, the n that lies mod qj in the interval Ij, for all j = 1, ..., K,
will typically be much much smaller than lcm(q1, ..., qK).
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5.2 The connection between s and MN

Rather than state the approximate Chinese Remainder Theorem as a seperate
theorem, and then apply it, we will integrate it directly into the proof of the
following theorem, which is all we really need for the proof of Theorem 4:

Theorem 5 Suppose 0 < ε1 < 1/2, and suppose that q1, ..., qK ≥ 2. Let
R ≥ 1 satisfy

R

log(4R) + log 16
>

27

16ε3
1

. (9)

If s 6= 0, then for

N ≥ K log(4R) + log 16

2s
we have that

MN(q1, ..., qK; d1, ..., dK) ≥ (d1q1 + · · ·+dKqK)−K Max
k

dk(ε1qk +1). (10)

In order to relate this theorem to Theorem 4, we need a way to bound
s(q1, ..., qK ; R) from below for almost all q1, ..., qK ≤ Q, for a particular value
of R. The following lemma is a step towards this:

Lemma 2 Suppose that m1, ..., mn is a sequence of integers, not all 0, and
suppose that x1, ..., xn are chosen independently and uniformly at random
from among the integers in [1, Q]. Then, the probability that

∣

∣

∣

∣

m1

x1

+ · · ·+ mn

xn

∣

∣

∣

∣

< ε2 (11)

is at most
1 + 2ε2Q

2/ Maxj |mj|
Q

.

Proof of the Lemma. Without loss of generality, assume that |mn| is
maximal among the list |m1|, ..., |mn|.

Let E be the event (11). We first consider the probability

P = P(y1, ..., yn−1) = P(E | x1 = y1, x2 = y2, .., xn−1 = yn−1)

This is the same as the probability that mn/xn lies in a certain interval of
width 2ε; specifically,

mn

xn

∈ −
(

m1

x1

+ · · · + mn−1

xn−1

)

+ [−ε2, ε2].
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This probability is maximal (the greatest number of xn satisfy it) when

m1

x1
+ · · ·+ mn−1

xn−1
= −mn

Q
− ε2,

in which case E holds whenever

1

Q
≤ 1

xn

<
1

Q
+

2ε2

|mn|
;

that is,
Q

1 + 2ε2Q/|mn|
< xn ≤ Q.

The width of this last interval is at most 2ε2Q
2/|mn|. So,

P ≤ 1 + 2ε2Q
2/|mn|

Q
.

So,

P(E) =
∑

1≤y1,...,yn−1≤Q

P(x1 = y1, ..., xn−1 = yn−1)P(E|x1 = y1, ..., xn−1 = yn−1)

≤ 1 + 2ε2Q
2/|mn|

Q
,

as claimed. �

Before we apply this lemma, we first consider the following question:
Given q1, ..., qK and R ≥ 1, how small would we expect s(q1, ..., qK ; R) to
be in absolute value? Well, there are, in total, (2R + 1)K − 1 sequences
(m1, ..., mK) 6= (0, ..., 0) and each of the sums

m1

q1
+ · · · + mK

qK

must be smaller than KR/Q in absolute value; and, if these (2R+1)K−1 sums
were uniformly distributed in [−KR/Q, KR/Q], then we would expect that
the smallest sum in absolute value has size about (2KR/Q)(2R + 1)−K. So,
for example, we would expect that it is fairly unlikely that for any sequence
of (m1, ..., mK) 6= (0, ..., 0),

∣

∣

∣

∣

m1

q1

+ · · · + mK

qK

∣

∣

∣

∣

<
δ

Q(2R + 1)K
, (12)
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once δ > 0 is small enough. Our lemma above will allow us to say how un-
likely: First, let ε2 = δQ−1(2R+1)−K . Then, from Lemma 2, each particular
sequence (m1, ..., mn) 6= (0, ..., 0) satisfies (12) with probability at most

1 + 2δQ(2R + 1)−K

Q
=

2δ

(2R + 1)K
+

1

Q
.

So, the probability that at least one of the (2R+1)K−1 sequences (m1, ..., mK) 6=
(0, ..., 0) satisfies (12) is at most

2δ +
(2R + 1)K

Q
.

So, just as we predicted, by choosing δ > 0 very near to 0, we have that this
will be unlikely, provided that (2R + 1)K is appreciably smaller than Q; in
fact, assuming that

K <
log Q + log δ

log(2R + 1)

we will have that this probability is smaller than 3δ.
Given some 0 < ε1 < 1/2, let R ≥ 500 be the minimal integer that

satisfies (9); this will mean that

27

16ε3
1

<
R

log(4R) + log 16
<

2

ε3
1

. (13)

With a little work one can check that

log(2R + 1) < 2 log

(

R

2(log(4R) + log 16)

)

< 2 log(1/ε3
1);

and so, we get that the probability of (12) holding for some (m1, ..., mK) 6=
(0, ..., 0), all |mi| ≤ R, is smaller than 3δ, provided that

K <
log Q + log δ

2 log(1/ε3
1)

<
log Q + log δ

log(2R + 1)
.

Combining this with Theorem 5, and choosing δ = 1/33 and ε1 = 1/41, we
have

Claim. If 1 ≤ q1, ..., qK ≤ Q are chosen at random, where

K0 < K <
log(Q/33)

6 log(41)
, (14)

17



then with probability at least 1−3δ ≈ 91.1% we will have that for R satisfying
(13),

s(q1, ..., qK; R) ≥ 1

33Q(2R + 1)K
,

and therefore by Theorem 5, we deduce that for

N ≥ (33/2)Q(2R + 1)K(K log(4R) + log 16) ≥ K log(4R) + log 16

2s
,

we have that for Q sufficiently large

MN ≥ (d1q1 + · · ·+ dKqK) − K Max
k

dk(ε1qk + 1)

≥ (d1q1 + · · ·+ dKqK) − KD(ε1Q + 1)

= (d1q1 + · · ·+ dKqK) − 2KE(d1)((2/41)E(q1) + 1)

≥ (d1q1 + · · ·+ dKqK) − (4/40.5)KE(d1)E(q1). (15)

Note that these expectations that appear in these last two inequalities is
a consequence of the fact that the di and qi are chosen independenly and
uniformly from sets [0, D] and {1, ..., Q}, respectively.

We can further refine this last inequality: We have by the Law of Large
Numbers that for K sufficiently large, the sum

d1q1 + · · ·+ dKqK

lies near to KE(q1)E(d1); in particular, we will have that we can replace the
lower bound in (15) with

MN ≥ 0.9(d1q1 + · · · + dKqK);

and, under the same assumptions that went into our claim above – in partic-
ular, (14) – we will have that this inequality on MN holds with probability
at least 90%.

For large values of K this range on N has the general form CK
2 Q, where

C2 is roughly 2R + 1. To be more precise, we have that since

lim
K→∞

(

2(2R + 1)K(K log(4R) + log 16)
)1/K

= 2R + 1,

then for any γ > 0 and K sufficiently large we will have that (15) holds for
N > (2R + 1 + γ)KQ. This clearly implies our theorem, and so we are done

18



once we prove Theorem 5. In order to translate this bound on C2 into a
numerical value, we observe from (13) that we must solve

R

log(4R) + log 16
=

2

ε3
1

= 482447,

and using Maple we find that this satisfies

R < 2.61 × 108.

So, for K and Q sufficiently large we may take

C2 < 5.22 × 108.

6 Proof of Theorem 5

In this section we will prove Theorem 5 using the following technical propo-
sition, and two of its corollaries.

Proposition 2 Suppose R ≥ 1, and suppose that q1, ..., qK ≥ 2. If s is as
defined in (8), and s 6= 0, then given any set of integers n1, ..., nK , there
exists an integer n satisfying

0 ≤ n <
K log(4R) + log 16

s
√

8
, (16)

such that
K
∏

i=1

(

1 − 4

∣

∣

∣

∣

∣

∣

∣

∣

n − ni

qi

∣

∣

∣

∣

∣

∣

∣

∣

2
)

>
2−1/R

(4R)K/4R
. (17)

Proof of the Proposition.

Define

f(n) =
K
∏

i=1

∣

∣e2πin/qi + e2πini/qi
∣

∣

2R
,

and let
H(m1, ..., mK) =

m1

q1

+ · · · + mK

qK

.

19



The fact we will exploit is that if f(n) is very large, say nearly its max-
imum value of 22KR, then we must have that ||(n − ni)/qi|| is close to 0 for
many values of i.

On expanding out f(n), we find that

f(n) =

K
∏

i=1

∣

∣

∣

∣

∣

R
∑

j=0

(

R

j

)

e2πi(nj+ni(R−j))/qi

∣

∣

∣

∣

∣

2

=
K
∏

i=1

∑

0≤j,j′≤R

(

R

j

)(

R

j ′

)

e2πi(n(j−j′)+ni(j′−j))/qi

=
∑

0≤j1 ,...,jK≤R

0≤j′
1

,...,j′
K

≤R

(

K
∏

i=1

(

R

ji

)(

R

j ′i

)

)

× e2πinH(j1−j′1,...,jK−j′
K

)e2πiH(n1(j′1−j1),...,nk(j′
K
−jK))

From the hypotheses of our proposition we have that if m1, ..., mK are
integers, not all 0, and |mi| ≤ R, then

∣

∣

∣

∣

∣

M
∑

n=−M

(

2M

n + M

)

e2πinH(m1 ,...,mK)

∣

∣

∣

∣

∣

= |1 + e2πiH(m1 ,...,mK)|2M

≤ |1 + e2πis|2M

= 22M cos2M(πs)

≤ 22M
(

1 − 4s2
)2M

≤ 22M exp
(

−8s2M
)

. (18)

And, trivially,
M
∑

n=−M

(

2M

n + M

)

e2πinH(0,...,0) = 22M .

So,

M
∑

n=−M

(

2M

n + M

)

f(n) = 22M
∑

0≤j1,...,jK≤R

(and j′
i
=ji)

K
∏

i=1

(

R

ji

)2

+ E
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= 22M

(

2R

R

)K

+ E

>
22M+2KR

(4R)K/2
+ E, (19)

where E is to be thought of as an error, and equals

∑

0≤j1,...,jK≤R

0≤j′
1

,...,j′
K

≤R

(j1,...,jK )6=(j′
1

,...,j′
K

)

(

K
∏

i=1

(

R

ji

)(

R

j ′i

)

)

e2πiH(n1(j′1−j1),...,nK(j′
K
−jK))

M
∑

n=−M

(

2M

n + M

)

e2πinH(j1−j′1,...,jK−j′
K

).

Using (18) we deduce that

|E| < 22M exp(−8s2M)

(

R
∑

j=0

(

R

j

)

)2K

= 22M+2KR exp(−8s2M).

Combining this bound on |E| with (19), we deduce that

M
∑

n=−M

(

2M

n + M

)

f(n) >
22M+2KR−1

(4R)K/2
(20)

whenever
exp(8s2M) > 2(4R)K/2,

which is to say

M >
K log(4R) + log 4

16s2
. (21)

We now require a basic lemma:

Lemma 3 For all integers M ≥ 1 we have that for x ≥ 0,

∑

|n|≥
√

2Mx

(

2M

n + M

)

≤ 22M+1e−2x.
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Proof. We could prove this using Stirling’s formula; however, Hoeffding’s
inequality, which is stated as Proposition 1 in the proof of Theorem 3 above,
quickly gives a decent upper bound. In our case, we set Y to be a binomial
random variable with parameters n = 2M and p = 1/2, and then we let
X = 2(Y −M), which can be written as X1 + · · ·+X2M , where Xi takes the
values ±1 each with probability 1/2. So, Hoeffding gives the bound

1

22M

∑

|j|≥
√

2Mx

(

2M

j + M

)

= P(|X| ≥ 2
√

2Mx) ≤ 2e−2x.

�

Applying the lemma with

x =
K log(4R)

4
+

log 8

2
(22)

we find that
∑

|n|≥
√

2Mx

(

2M

n + M

)

≤ 22M−2

(4R)K/2
;

and so, since f(n) ≤ 22KR we deduce

∑

|n|≥
√

2Mx

(

2M

n + M

)

f(n) ≤ 22M+2KR−2

(4R)K/2
.

Combining this with (20) we deduce

∑

|n|<
√

2Mx

(

2M

n + M

)

f(n) >
22M+2KR−2

(4R)K/2
.

Now, as the sum of these binomial coefficients is at most 22M , we deduce
that there exists an integer n satisfying |n| <

√
2Mx and

f(n) >
22KR−2

(4R)K/2
. (23)

Using now the fact that for θ ∈ [−1/2, 1/2],

∣

∣1 + e2πiθ
∣

∣ =
∣

∣e−πiθ + eπiθ
∣

∣ = 2 cos(πθ) ≤ 2
(

1 − 4θ2
)

,
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we deduce that (23) implies that for some integer |n| ≤
√

2Mx,

K
∏

i=1

(

1 − 4

∣

∣

∣

∣

∣

∣

∣

∣

n − ni

qi

∣

∣

∣

∣

∣

∣

∣

∣

2
)

>
2−1/R

(4R)K/4R
. (24)

Now, since this bound does not depend on the choice of phases n1, ..., nK ,
by shifting ni by an amount b

√
2Mxc+ 1, we deduce that (24) in fact holds

for 0 ≤ n < 2
√

2Mx.
Since this holds for any M satisfying (21), and for x satisfying (22), we

have that (24) holds for 0 ≤ n < N , for any N satisfying

N2 > 8

(

K log(4R) + log 4

16s2

)(

K log(4R)

4
+

log 8

2

)

,

which certainly holds if

N ≥ K log(4R) + log 16

s
√

8
.

Proposition 2 now easily follows. �

Corollary 1 Let 0 < ε < 1 and 0 < δ < 1/2 be given, and suppose that

R

log(4R) + log 16
>

1

16εδ2
. (25)

Then, if q1, ..., qK ≥ 2 satisfy s(q1, ..., qk; R) 6= 0, then there exists an
integer n in the range (16) such that

∣

∣

∣

∣

∣

∣

∣

∣

n − ni

qi

∣

∣

∣

∣

∣

∣

∣

∣

< δ, for all but εK integers i = 1, 2, ..., K.

Proof.
Suppose that R satisfies (25), and that for every integers n there are at

least εK integers i = 1, ..., K satisfying

∣

∣

∣

∣

∣

∣

∣

∣

n − ni

qi

∣

∣

∣

∣

∣

∣

∣

∣

≥ δ.
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Then, we will have that for every integer n,

K
∏

i=1

(

1 − 4

∣

∣

∣

∣

∣

∣

∣

∣

n − ni

qi

∣

∣

∣

∣

∣

∣

∣

∣

2
)

≤
(

1 − 4δ2
)εK ≤ exp

(

−4εKδ2
)

.

Using (25) we have that this right most quantity satisfies

exp
(

−4εKδ2
)

<
2−1/R

(4R)K/4R
.

This then would give us a contradiction, because it would imply that (17)
fails to hold for every n. The corollary now follows. �

Corollary 2 Suppose 0 < α, β < 1/2; suppose that q1, . . . , qK ≥ 2 are inte-
gers; suppose that R ≥ 1 satisfies

R

log(4R) + log 16
>

1

4αβ2
;

and, suppose that s(q1, ..., qK; R) 6= 0.
Then, for any set of integer phases δ1, ..., δK, there exists an integer n in

the range (16), such that for at least (1−α)K indices i = 1, 2, ..., K we have

fi(n + δi) ≥ (1 − β)qi − 1.

Proof.

For i = 1, 2, ..., K, let

ni = bβqi/2c − δi + 1,

and let ε = α and δ = β/2. It follows that

R

log(4R) + log 16
>

1

16εδ2
.

Thus, since we have assumed s(q1, ..., qK; R) 6= 0, it follows from Corollary
1 that there exists an integer n such that for at least (1 − ε)K = (1 − α)K
indices i = 1, 2, ..., K,

∣

∣

∣

∣

∣

∣

∣

∣

n − ni

qi

∣

∣

∣

∣

∣

∣

∣

∣

< δ = β/2.
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For such indices i and integer n we get that

fi(n + δi) = fi(n − ni + bβqi/2c + 1) > fi(βqi/2 + bβqi/2c + 1)

≥ qi(1 − β) − 1.

�

The proof of Theorem 5 is now but a simple application of Corollary
2: The hypotheses of this theorem match the hypotheses of Corollary 2 for
α = ε1/3 and β = 2ε1/3; and so, given any set of phases δ1, ..., δK, there
exists an integer n in the range (16) such that for at least (1 − α)K indices
i we have that

fi(n + δi) ≥ (1 − β)qi − 1.

Thus, if we let S0 denote the set of all indices i where this inequality holds,
and let S1 = {1, ..., K} \ S0, then we have

K
∑

i=1

difi(n + δi)

≥
∑

i∈S0

di((1 − β)qi − 1) +
∑

i∈S1

di

= (d1q1 + · · · + dKqK) −
∑

i∈S0

di(βqi + 1) −
∑

i∈S1

di(qi − 1)

≥ (d1q1 + · · · + dKqK) − |S0|Max
i

di(βqi + 1) − |S1|Max
i

di(qi − 1)

≥ (d1q1 + · · · + dKqK) − K Max
i

di(βqi + 1) − αK Max
i

di(qi − 1)

Setting α = ε1/3 and β = 2ε1/3 we get that this last line is at most

(d1q1 + · · ·+ qKqK) − K Max
i

di(ε1qi + 1),

and the theorem is proved.

7 Computer Experiments
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