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1 Introduction

In this paper we give the original proof of the Balog-Szemerédi Theorem,
as appears in Nathanson’s Additive Number Theory: Inverse Problems and

the Geometry of Sumsets. By “original” here I mean that there is a more
recent, simpler proof due to Gowers, which has the additional advantage of
giving much sharper bounds on the respective constants that appear in it, as
it does not appeal to the Szemerédi Regularity Lemma (which is known to
give “tower-type” bounds for certain parameters in its conclusion).

Let us first state a simplified version of the theorem, which is the only
version we will bother to prove in this note:

Theorem 1 For every ε0, ε1 > 0, there exists C > 0 and δ0, δ1 > 0 such that

the following holds: Suppose A is a finite set of integers having cardinality

k, and further suppose there is a subset S of 2A, having cardinality at least

ε0k, such that for every s ∈ S,

#{(a, b) ∈ A × A : a + b = s} > ε1k.

Then, if |A| > C, there exists a subset A′ ⊆ A such that

|A′| ≥ δ0k, and |2A′| ≤ δ1k.

Note that the set S cannot be too large as

|S| ≤
1

ε1k

∑

s∈S

#{a, b ∈ A : a + b = s} ≤
|A|2

ε1k
=

k

ε1

. (1)
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To prove Theorem 1, we will make use of the celebrated regularity lemma.
First, we need to introduce some definitions. Suppose that G is an undirected
graph, and that X and Y are two disjoint sets of vertices of G. Let e(X, Y )
denote the number of edges that connect a vertex of X to a vertex of Y .
Define the density

d(X, Y ) =
e(X, Y )

|X||Y |
.

Note that
0 ≤ d(X, Y ) ≤ 1.

We now can state the regularity lemma:

Theorem 2 (Szemerédi’s Regularity Lemma) For every 0 < ε < 1 and

m ≥ 1, there exist numbers M and K such that the following holds: Suppose

that G is a graph having vertex set V and edge set E, where |V | ≥ K. Then,

there is a partition of V into sets V0, V1, ..., Vµ, where

m ≤ µ ≤ M,

which have the following remarkable properties

1. |V0| ≤ ε|V |. This set V0 is called the exceptional set.

2. |V1| = |V2| = · · · = |Vµ|.
3. All but at most εµ2 of the pairs (Vi, Vj), 1 ≤ i < j ≤ µ are ε-regular.

A pair (Vi, Vj) is said to be ε-regular if for every

X ⊆ Vi, and Y ⊆ Vj,

with

|X| ≥ ε|Vi|, and |Y | ≥ ε|Vj|,

we have

|d(X, Y ) − d(Vi, Vj)| < ε.

Remark. The unfortunate thing about the regularity lemma is that the
constant M can have “exponential tower” growth in terms of m and ε−1.
This is not merely an artifact of the method used to prove the theorem, but
is in fact necessary, as a paper of Gowers shows.
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2 Proof of the Balog-Szemerédi Theorem

2.1 Basic Strategy

The basic idea for proving the theorem will be to produce a subset S ′ ⊆ S
such that

|S ′| ≥ c1k,

and
|2S ′| ≤ c2k.

Let us now see that the mere existence of such a set S ′ proves the theorem:
First, we claim that there exists a ∈ A such that the number of elements
b ∈ A satisfying a + b ∈ S ′ is at least c3k, where c3 does not depend on k;
this follows since there are at least |S ′|ε1k ≥ c1ε1k

2 pairs (a, b) ∈ A×A such
that a + b ∈ S ′. For such an a ∈ A, let A′ be the set of all these numbers
b ∈ A such that a + b ∈ S ′; thus,

A′ + a ⊆ S ′, and |A′| ≥ c3k.

Also,
|2A′| = |2A′ + 2a| ≤ |2S ′| ≤ c2k,

and the theorem is proved for δ0 = c3 and δ1 = c2.

2.2 Proving that 2S ′ is small

Suppose C is a set of integers satisfying

|C| ≤ k,

and for which we want to prove that

|2C| ≤ c4k.

An obvious approach to this problem is to show that each n ∈ 2C has at
least c5k representations as n = x1 + x2, with x1, x2 ∈ C: For if this holds
for all such n, then we can deduce that

|2C| ≤
1

c5k

∑

n∈2C

r(n) =
|C|2

c5k
≤

k

c5

,
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where r(n) is the number of pairs (x1, x2) ∈ C × C such that x1 + x2 = n.
One can generalize this idea further by introducing greater flexibility into

the argument, to make it easier to prove |2C| is small. For example, suppose
that one knows that the sumset

C1 + C2 + C3

contains 2C, where
|C1|, |C2|, and |C3| ≤ k.

Further, suppose that
r(n) ≥ c5k

2,

where, in this context, r(n) is the number of representations of n ∈ 2C as
n = x1 + x2 + x3, where xi ∈ Ci. Then, we will have

|2C| ≤
1

c5k2

∑

n∈2C

r(n) ≤
|C1||C2||C3|

c5k2
≤

k

c5

.

As good as this approach seems, without some extra knowledge about
the set S ′, it will not prove that |2S ′| is small, as we would like. In the
next section we will give a construction of a set S ′ having a lot of additional
structure, and we will use this last technique for bounding |2C| to bound
|2S ′| from above.

2.3 The Connection with Graphs (no pun intended)

A common technique to prove such a combinatorial result as finding a set S ′

is to somehow encode the problem in terms of graphs, and in this section we
will explain how to do this.

One obvious thing to try is to build a graph where the vertex set V = A,
and where there is an edge between the vertices a1 and a2 if and only if
a1 + a2 ∈ S. Denote this graph by G. To this graph G we will also give an
edge coloring with |S| colors, where the edge (a1, a2) has color a1 + a2. For
a vertex set V0 ⊆ V and a color s ∈ S, by V0(s) we denote the set of all
vertices v ∈ V0 which are endpoints of an edge of color s.

Suppose that there are two vertex sets V1, V2 ⊆ V and a color set S ′ ⊆ S,
such that |S ′| ≥ c7k, and there is “high-connectivity” between those vertices
in V1 and in V2 that are endpoints of edges of the colors s ∈ S ′. More
specifically, we suppose that:
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For any s1, s2 ∈ S ′ there are at least c9k
2 edges between V1(s1)

and V2(s2); that is, e(V1(s1), V2(s2)) ≥ c9k
2.

If we can find such a pair of vertex sets V1 and V2 and the color set S ′,
then our theorem will follow rather easily from the ideas listed in Sections 2.1
and 2.2. To show that 2S ′ is small, we will show that each element s∗ ∈ 2S ′

has “many” representations as

s∗ = s + a1 + a2, where s ∈ S, a1, a2 ∈ A.

That is, we will show that there are at least c10k
2 triples (s, a1, a2) ∈ S×A×A

such that
s∗ = s + a1 + a2.

To see that this implies our theorem, we note that if each s∗ has so many
triples (s, a1, b2), then from the upper bound on |S| in (1) we deduce

|2S ′| ≤
|S||A|2

c10k2
≤

k3

ε1c10k2
=

1

ε1c10

k.

The theorem would then follow from the comments in Section 2.1.
To show that there are so many triples (s, a1, a2), for each s∗ ∈ 2S ′, fix a

representation s∗ = s1 + s2, where s1, s2 ∈ S ′. Now suppose that v1 ∈ V1(s1)
and v2 ∈ V2(s2) have an edge between them; as stated above, the number of
such pairs (v1, v2) ∈ V1(s1) × V2(s2) with this property is at least c9k

2. By
the definitions of the sets V1(s1) and V2(s2), associated to this pair (v1, v2)
is a unique pair of vertices (a1, a2), such that there is an edge of color s1

between v1 and a1, and an edge of color s2 between v2 and a2; these vertices
a1 and a2 may not lie in V1 or V2, which does not matter for our argument.
Thus, associated to s∗ is a set of at least c9k

2 distinct triples

(s, a1, a2) = (v1 + v2, a1, a2) ∈ S × A × A,

such that

s + a1 + a2 = (v1 + a1) + (v2 + a2) = s1 + s2 = s∗,

which is just what we wanted to show.
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2.4 Regularity Lemma and Proof of the Existence of
V1, V2, and S ′

In this section we will finish the proof of the theorem, by showing how the
regularity lemma can be used to construct the vertex sets V1 and V2 and the
color set S ′.

Let ε > 0 be as small as needed, and m ≥ 1 be as large as needed, in
order for our argument to work (that is, ε > 0 and m ≥ 1 will be chosen
later). Then, we invoke the Szemerédi regularity lemma, and apply it to our
graph G, while supposing that k is large enough for the lemma to apply for
our particular choice of ε and m. Thus, we have a partition of the vertex set
of G into V0, V1, ..., Vµ satisfying the conclusion of the regularity lemma.

Now we remove edges from the graph G, to produce a graph G′, in four
different phases:

1. Delete all the edges connected to vertices in the exceptional set V0. As
V0 has at most εk vertices, this step removes at most εk2 edges from G.

2. If a pair of vertex sets (Vi, Vj) is not ε-regular, then we delete all the
edges between them. As there are at most εµ2 pairs of vertex sets (Vi, Vj)
which are not regular, and since |Vi| = |Vj| ≤ k/µ for 1 ≤ i, j ≤ µ, this step
removes at most the following number of edges

∑

1≤i,j≤µ

(Vi,Vj ) not regular

e(Vi, Vj) <
∑

1≤i,j≤µ

(Vi,Vj ) not regular

(k/µ)2 < εk2.

3. For any vertex set Vi and any color s such that |Vi(s)| < ε|Vi| we
delete all edges of color s with an endpoint in Vi. The total number of edges
deleted, for all the vertex sets Vi, and for all colors s, is at most

µ
∑

i=1

∑

s∈S

ε|Vi| ≤ εk|S| ≤
εk2

ε1

.

This last inequality follows from our upper bound on |S| provided by (1).

4. Finally, we delete all the edges from Vi to Vi, for each i = 1, ..., µ. The
number of edges deleted here is at most

µ
∑

i=1

|Vi|
2 ≤ µ

(

k

µ

)2

=
k2

µ
.
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The total number of edges in G is at least

∑

s∈S

#{edges in G of color s} ≥ |S|ε1k ≥ ε0ε1k
2.

And, the total number of edges we removed is at most

(

2ε +
ε

ε1

+
1

µ

)

k2,

which can be made to be as small a proportion of the ≥ ε0ε1k
2 edges in G as

we like, by taking ε > 0 sufficiently small, and m ≥ 1 sufficiently large. In
particular, we can choose ε > 0 and m ≥ 2 so that

#{edges in G′} ≥
ε0ε1

2
k2.

Since there are at most
(

µ

2

)

<
1

2
µ2

pairs of vertex sets (Vi, Vj), there must be a pair with at least c10k
2 edges (in

G′) between them, where c10 = ε0ε1/µ
2. Such a pair (Vi, Vj) is necessarily

ε-regular in the original graph G, for edges between non-regular vertex sets
get deleted by step 2 above.

Relabeling the vertex sets as needed, we can assume that i = 1 and j = 2
so that the pair under consideration is (V1, V2). We now let S ′ be the set of
all colors of edges (in G′) between V1 and V2. To bound |S ′| from below, pick
a vertex v ∈ V1 having at least the average number of edges into V2. As V1

has at most k vertices, we conclude that there are at least c10k edges form v
into V2, and each of these edges must be of a different color, which gives that

|S ′| ≥ c10k.

Now, from the way that we have deleted edges from G to produce G′, and
in particular, step 3 of the deletion process, we have that |V1(s)| ≥ ε|V1| for
any color s ∈ S ′; bear in mind that not all these edges will have their other
endpoint in V2. We similarly have that |V2(s)| ≥ ε|V2|. Let s1, s2 ∈ S ′. From
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the fact that the pair (V1, V2) is ε-regular (in the original graph G), we have
that

d(V1(s1), V2(s2)) > d(V1, V2) − ε.

(Here and below the quantities d and e refer to the original graph G, not to
G′.) Now,

d(V1, V2) =
e(V1, V2)

|V1||V2|
≥

ε0ε1k
2

µ2|V1||V2|
≥ ε0ε1.

By taking ε > 0 sufficiently small, we will have that

d(V1(s1), V2(s2)) > ε0ε1 − ε > ε.

It follows that

e(V1(s1), V2(s2)) > ε|V1(s1)||V2(s2)| > ε(ε|V1|)(ε|V2|) > ε3|V1||V2|.

To bound this from below, we note for ε < 1/2 that there are at least k/2
vertices in V1 ∪ · · · ∪ Vµ (because |V0| < εk, and |V1| = |V2| = · · · = |Vµ|),
which implies

|V1|, |V2| ≥
k

2µ
;

and so,

e(V1(s1), V2(s2)) >
ε3k2

4µ2
.

Thus, we have proved that the vertex sets V1 and V2 have the requisite
properties with

c9 =
ε3

4µ2
,

for ε > 0 sufficiently small; and so, the theorem follows.
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