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I work mainly in additive combinatorics and in classical analytic number
theory. Here I will describe a few of my past, current, and future research
projects in rough chronological order.

1 Early work

I have always been intrigued by simple questions that require complex ar-
guments to solve, and while a graduate student I was fortunate enough to
solve a nice problem of this sort in combinatorial number theory, posed by
the late P. Erdés. This problem asked if when you partition the integers
2 and higher into a finite number of classes, whether some class contains a
finite collection of numbers 1, ..., x; such that

I showed that the answer to the question is ‘yes’, and my short, though
rather technical proof was published in the Annals of Mathematics.

After having solved this question and several more like it in the theory of
unit fractions (a unit fraction is a number 1/n, where n is a non-zero integer),
while on a postdoc at U. C. Berkeley, I started looking into a number of
problems pertaining to smooth numbers, which are integers having no ‘large’
prime factors. In particular, I had wanted to improve an old result of A.
Balog, which says that the interval [z, z +2'/27¢] always contains an integer
having no prime divisors exceeding x°. There are various applications in
number theory and cryptology that require that the shorter interval [z, z +
cy/z] contains such a number, and I discovered a way to make use of the
theory of bilinear forms of Kloosterman sums, as developed by W. Duke, J.
Friedlander, and H. Iwaniec, to slightly improve on the best result known,
due to G. Harman, which says that such intervals contain an integer free of



prime divisors exceeding z'/4vVe. Even though I had the idea for how to do
this many years ago, I only wrote it up within the past three years, and it
appeared in International Journal of Number Theory.

From the time I first had the idea of how to solve this problem on smooth
numbers in [z,x + ¢y/z], I realized that the central obstruction to greatly
improving my method, as well as several other methods for attacking the
problem, concerns the local distribution of values of certain multiplicative
functions (or ‘almost multiplicative’ functions). I came to realize that the
following well-known problem had some of the same types of obstrctions
that come up with smooth numbers, yet because it is simpler to state, I
thought it was worth thinking about too: Suppose that f(n) is a completely
multiplicative function taking on the values +1 and —1 with equal frequency;
that is,

for all a,b € N, f(ab) = f(a)f(b); and, Zf(n) = o(z).

n<x

Then, must f(n) change sign about x/2 times over all n < x? That is, must
there exist a set of about /2 values n < x such that

fn) = =fln+1)7

This problem is related to something called the “parity problem” that comes
up in the study of sieve methods, and in retrospect I now see that perhaps
I chose a quite difficult problem to work on!

A. Hildebrand had the best results on this problem: He showed that for
infinitely many x, the number of n < z such that f(n) = —f(n+1) exceeds

cx/(loglogz)* (for some ¢ > 0).

Amazing as this lower bound is, it has the unfortunate limitation that it
only holds for infinitely many z, instead of for all sufficiently large x. 1
discovered a slightly intricate method involving elementary diophantine ap-
proximation, which is different from Hildebrand’s approach, and which gives
a lower bound that holds for all z; unfortunately, it is somewhat weaker
than Hildebrand’s bound for those x where Hildebrand gives any non-trivial
bound at all. My paper on this appeared in Journal of Number Theory a
few years ago.



2 Work on arithmetic combinatorics: arithmetic
progressions

Just as I came to Georgia Tech, I began working on a new project in additive
combinatorics, namely the Erdds-Turan conjecture. This conjecture is an
old, central problem in the subject, which asks simply whether every subset
S of the naturals such that

ses

contains arbitrarily long arithmetic progressions. We are at present quite
far from proving this even for three-term progressions; however, there are
several impressive results due to K. F. Roth, W. T. Gowers, J. Bourgain,
E. Szemeredi, T. Tao, B. Green, and others, which show that subsets of the
integers in {1,..., N} with certain density or structural restrictions, must
contain long arithmetic progressions, where here “long” means larger than
log log log log log N.

Although these approaches are brilliant and deep, what one would like to
have are structural results that would allow one to instantly see why dense
subsets of {1, ..., N} have long arithmetic progressions, or at the very least
a classification of all subsets having fewer than the expected number of k
term progressions (a random subset of {1,..., N} of density 0 has ~ c;0* N2
arithmetic progressions of length k, for some constant ¢, that does not
depend on N or #). This describes a substantial part of my research in
this area that I began while at Georgia Tech.

To describe this work, first I need a definition. Given a finite abelian
group G, and a density 6 € (0,1], we say that a subset S C G is a critical
set of density at least 6 if |S| > 0|G|, and if S has the minimal number
of thee-term arithmetic progressions among all subsets of G having at least
0|G| elements. In this context a three-term arithmetic progression is a triple
of points x,y, z € S satisfying x 4+ y = 2z. If one knew precisely how many
three-term arithmetic progressions that critical sets in F,, (although F, is
a field, we only consider the additive structure, which is an abelian group)
had, and if they had as many as is widely believed, then one could solve the
Erdés-Turan problem for k = 3. Rough descriptions of some of my recent
results are given as follows:

Theorem 1. Fix a 6 € (0,1], and consider a critical set in I}, having at least
Op elements. Compute the number of three-term progressions in this set, and
normalize by dividing by p?. Let this number be &,. Then, it turns out that



as p runs through the prime numbers, d, tends to some limit § € (0, 1].
Thus, the result is saying that critical sets of the same density lying in
two different fields have about the same number of three-term arithmetic
progressions, upon properly normalizing. This result appeared in Canadian
Math Bulletin.

Theorem 2. Given 6 € (0,1], if S is a critical set of [, with at least 6p
elements, then S contains an arithmetic progression of length (log p)l/ 4-o(1),
Compared to the best that is known for arithmetic progressions in arbitrary
sets of density 6, this is rather long: Gowers, who has the best results,
showed that every subset of I, of density ¢ has an arithmetic progression
of length at least log loglog loglogp + ¢(#). My result appeared some years
ago in Journal of Combinatorial Theory Series A.

Theorem 3. Fix a density 6 € (0,1]. Given a prime p, let S be a critical
set in F), having at least fp elements. Then, apart from o(p) elements, S is
a sumset A + B, where |[A| = p'=°(1) and |B| = p°V. In fact, A is what is
called a Bohr neighborhood; and, one can deduce from this other structural
results, such as that S is approximately the union of several long arithmetic
progressions (or is a sumset A 4+ B, where A is an arithmetic progression of
length p° for some 6 € (0,1]). Tt is worth remarking that this result can be
deduced from an old theorem of B. Green called the “arithmetic regularity
lemma”; however, my result holds for much lower densities than can be
achieved via Green’s theorem. This paper has been submitted.

Theorem 4. In joint work with Olof Sisask, I developed a new proof of
Roth’s theorem that a positive density subset of {1, ..., N} contains a three-
term arithmetic progression. This paper is to appear in Proceedings of the
AMS.

I feel that it should be possible to prove much more exact structure theo-
rems on three-term progressions than the ones I have listed above; however,
I will hold off describing this here, as they are rather technical.

3 Additive combinatorics: more recent work

3.1 Sum-product inequalities and incidence theorems

In addition to these results on arithmetic progressions, I have also been
working recently on some questions related to “sum-product inequalities”,
and on properties of sumsets.



The work on sum-product inequalities is related to an old problem con-
sidered by P. Erdés and E. Szemerédi: Suppose that A is a set of real
numbers of size n. Give a lower bound for max(|A + A|,|A.A|), where here
A+ A is the set of sums a+0b, with a,b € A, while A.A is the set of products
ab. The point of the question is that it is easy to construct sets A for which
A+ Ais “small” (e.g. just take A to be an arithmetic progression), but
for all such constructions one will see that the product set A.A is “large”;
similarly, the constructions with A.A small must have A + A large. Erdds
and Szemerédi proved that, in fact, there is a positive constant ¢ > 0 so that
for n large enough, one has

max(|A + A|, |A.A]) > |A]MTE

This basic result has been sharpened and extended by numerous people,
and the most recent result is due to J. Solymosi, who showed in a short and
brilliant paper (all Solymosi’s papers are short and brilliant!) that one may
take £ = 1/3.
Perhaps the most elegant proof of sum-product inequalities, which achieved
a lower bound with ¢ = 1/4, is due to G. Elekes, who applied the Szemerédi-
Trotter incidence theorem in a powerful and beautiful way. Essentially, his
proof boils down to showing that if A.A and A+ A were “small”, say both
were of size |A|'T¢ for small ¢ > 0, then there would be too many “rich
lines”
(a-t, b+1t), t € R, wherea,be A,

passing through the grid
(A.A) x (A+A).

Here, by “rich line”, we mean a line that hits a grid in too many places.
Note that each of these lines above hits the grid in |A| places.

This led me to wonder what more one could prove much more, especially
the following variant of a conjecture of Solymosi:

Conjecture. For every ¢ > 0, there exists § > 0 such that the following
holds for all n sufficiently large: Suppose that A and B are sets of n real
numbers. Then, there can be at most n° lines in general position (no three
meeting at a point, no line parallel to any others) such that each intersects
A x B in more than n'~9 points.

I have not yet been able to prove this conjecture; but, I feel that I have
all the ingredients to do so, and just need the time to assemble them into a



proof. A significant ingredient in my hypothetical proof, and surely a good
first step at showing Solymosi’s conjecture regardless of the approach, is the
following result, which I coauthored with my student Evan Borenstein:

Theorem 5. For every € > 0, there exists § > 0 such that the following
holds for all n sufficiently large: Suppose that A and B are sets of n real
numbers. Then, if one has a family of lines containing at least n® distinct
slopes, and where each line is parallel to at least n® others, at least one of
them must fail to be n'~9-rich — i.e. must fail to intersect the grid in at
least n'~? points.

It is a fairly straightforward exercise to show that Solymosi’s conjecture
implies this theorem. Also note that this theorem is in spirit related to
Solymosi’s conjecture, as both pertain to small families of lines (n°) lines)
that are “rich” in a grid.

Besides working on the above conjecture of Solymosi, I also have an
idea for how to give an alternate proof of sum-product inequalities, though
the parameter € involved will be weaker than the recent result of Solymosi
(e = 1/3). However, my idea can be generalized to prove theorems about
rich “cuves” passing through grids A x B, instead of merely rich lines; and,
the results that it gives are stronger than those produced by the Szemerédi-
Trotter theorem for curves. This should have many applications to other
additive combinatorial problems; indeed, my original motivation for proving
such a theorem was to attack certain basic questions pertaining to which
polynomials f(z,y) € R[z,y] are “expanders”. !

3.2 The structure of sumsets

Another area of additive combinatorics that I have recently been working
on concerns the structure of sumsets A + B. One recent result on this was
one I coauthored with Tomasz Schoen, which shows that so long as one has
a “large” spectral gap between any two consecutive Fourier coefficients of
a set A C I, then the sumset A 4+ A must cover 1 — ¢ proportion of F,,.
This can be thought of as a generalization of the familiar fact that if the
second-largest Fourier coefficient of a set is small relative to the largest one,
then A+ A must be “large”. Furthermore, we have generalized the result to
k-fold sums A+ A+---+ A, for k > 3, and were able to produce nice spectral

We say that f(x,y) is an “expander” if there exists ¢ > 0 such that the image of A x A
under the map f has size at least |A|**¢ once |A| is large enough.



gap conditions guaranteeing that the sum equals all of IF,,, not merely 1 —¢
fraction of IF,. Our paper on this is to appear in Acta Arithmetica.

In order to motivate another recent theorem of mine on sumsets, it is
worth briefly mentioning the Balog-Szemerédi-Gowers theorem: Certain fi-
nite sets A taken from an additive abelian group have the property that
when one forms the sumset A+ A, one does not get “growth” —i.e. one gets
that |A+ A| is “not significantly larger” than the set A itself. For example, if
the additive abelian group is the integers, and if one lets A := {1,2,..., N},
then |[A+ A| = 2N — 1, which is “only” about double the size of A. On the
other hand, if one were to let A := {2,4,8,...,2V}, then A + A would have
size ~ N?/2, so would be significantly larger than A. Now, certain sets A,
although they produce large sets A + A, nonethless have a lot of “additive
structure”, specifically there are a small number of s € A+ A for which very
many of the pairs (a,b) € Ax Alead to s = a+0b. In such a case, one might
guess that it should be possible to pass to a large subset A’ C A such that
A"+ A’ is “small”; that is, one might guess it is possible to “filter out” the
contribution of those s € A + A having few representations as a sum a + b,
a,b € A. This guess is exactly what the Balog-Szemerédi-Gowers theorem
tells us, and is stated as follows:

Balog-Szemerédi-Gowers Theorem. Suppose that A is a finite subset
of size n of an additive abelian group, and that the number of quadruples
a1, a9, as, as satisfying

a1 +ay = asg+ aq

is at least n3~¢. Then, there exists a subset A’ C A satisfying
1A >, n'TE) and |4+ A <. n'TIE)
where f and g are fixed polynomials (they do not depend on ¢).

The theorem that I and Evan Borenstein proved involves multiple sums,
and can be thought of as a variant of a similar sort of result due to Sudakov,
Szemerédi and Vu, which appeared in their paper On a question of Erdds
and Moser, Duke Math. Jour 129 (2005), 129-155. Our theorem is given as
follows:

Theorem 6. For every 0 < ¢ < 1/2 and ¢ > 1, there exists § > 0, such that
the following holds for all k sufficiently large, and all sufficiently large finite
subsets A of an abelian group: Suppose that

S C AxAx---xA = Ak,



and let
X(8) = H{ar+--+ax : (a1,...,ax) € S}.

If
S| = [A]*, and [Z(5)] < |A[

then there exists
A/ g A, ’A/‘ 2 ’A‘I_E,

such that
‘BA/‘ = ‘A’ 4+ .- _|_A/‘ < ’A/‘c(l—l—sé)'

The way that our theorem differs from that of Sudakov, Szemerédi, and
Vu is the fact that we get much better control on the growth of the size
of these sums A’ + --- + A’. Indeed, for ¢ small and € near 0, the sum
A"+ ...+ A is at most about |A|¢ in size.

There are many other projects on additive combinatorics that I am also
currently considering; unfortunately, it would take me quite a lot of space
to describe them all!

4 Analytic Number theory: recent work

Finally, besides these projects in additive combinatorics that form the core
of my research, I have been working on many projects while at Georgia
Tech with students and other colleagues. One of these concerns the square
dependence problem, which has its origins in the theory of integer factor-
ization and cryptology, and is the following basic question: Select integers
ni,na,... < N at random until some subset of them has product equal to a
square. What is the expected stopping time for this process?

Schroppel and Pomerance obtained upper and lower bounds for this ex-
pected stopping time 7' = T'(N), and deduced

T e [yo,yé+o(1)], where yo = yo(N) = eXp(\/Z log N loglog N);

however, they gave no estimate for this o(1), and so, in particular, could not
give an asymptotic estimate for 7' (nor even anything close to an asymptotic
estimate). Recently, myself, A. Granville, R. Pemantle and P. Tetali showed
that

T € [(m/4)(e™ = o(1))yo, (¢77 4 o(1))yo]-



Moreover, we believe that the upper bound here is the true stopping time!

If the lower bound could be brought up to equal the upper bound, then
we will have established the true order of the stopping time in the square
dependence problem. Such an accomplishment would bring an end to a long,
interesting, and beautiful research programme initiated by Pomerance and
others, to rigorously analyze the running time of a major component of sev-
eral different integer factoring algorithms. Besides the purely mathematical
implications, our work (suitably generalized and refined) might also lead to
better-performing integer factoring algorithms.



