Available online at www.sciencedirect.com

ScienceDirect J.M.PA.

- 22N
ELSEVIER Journal de Mathématiques Pures et Appliquées 00 (2018) 1-47

Differentiability in the Wasserstein space; well-posedness for HIE

On differentiability in the Wasserstein space and well-posedness
for Hamilton-Jacobi equations

Wilfrid Gangbo

Department of Mathematics, UCLA, Los Angeles, CA 90095; wgangbo @math.ucla.edu

Adrian Tudorascu

Department of Mathematics, West Virginia University, Morgantown, WV 26506, adriant@math.wvu.edu

Abstract

In this paper we elucidate the connection between various notions of differentiability in the Wasserstein space: some have
been introduced intrinsically (in the Wasserstein space, by using typical objects from the theory of Optimal Transport) and
used by various authors to study gradient flows, Hamiltonian flows, and Hamilton-Jacobi equations in this context. Another
notion is extrinsic and arises from the identification of the Wasserstein space with the Hilbert space of square-integrable
random variables on a non-atomic probability space. As a consequence, the classical theory of well-posedness for viscosity
solutions for Hamilton-Jacobi equations in infinite-dimensional Hilbert spaces is brought to bear on well-posedness for
Hamilton-Jacobi equations in the Wasserstein space.

Résumé. Dans cet article, nous élucidons le lien entre diverses notions de différentiabilité dans 1’espace de Wasserstein:
certaines ont été introduites intrinsequement (dans 1’espace de Wasserstein, en utilisant des objets typiques de la théorie du
transport optimal) et utilisées par divers auteurs pour étudier les flots gradients, les flots Hamiltoniens ainsi que les équations
de Hamilton—Jacobi dans ce contexte. Une notion alternative et extrinseque, est basée sur 1’identification de 1’espace de
Wasserstein avec 1’espace de Hilbert des variables aléatoires de carré intégrables, sur un espace des mesures de probabilité
non—atomique. Il s’avere que la théorie des équations de Hamilton-Jacobi dans I’espace de Wasserstein, repose sur la théorie
classique des solutions de viscosité des équations de Hamilton—Jacobi dans les espaces de Hilbert de dimension infinie.
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1. Introduction

This manuscript is a contribution to the theory of viscosity solutions for Hamilton-Jacobi equations in P, (R%),

the set of probability measure on R? with finite second moments; it is endowed with the Wasserstein metric

W,. Many challenges already overcome on “flat” spaces, such as Banach spaces which satisfy the so-called
1
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Radon-Nikodym property (cf. e.g. [11] [12]), have to be faced in the study of first order equations in P, (R%).
The latter set, with its special metric structure, allows for an Eulerian description of systems consisting of either
finitely many or infinitely many particles. A Lagrangian description of these systems can be achieved via any
fixed non-atomic probability space. For instance, as done in this manuscript, one can choose the probability
space Q to be the ball of unit volume in R¢, centered at the origin. The probability measure here will be the the
d-dimensional Lebesgue measure restricted to Q (denoted by Lg) and the set of random variables is the Hilbert
space
H := L2(Q; RY).

It is endowed with the inner product (-, -), defined for X, Y € H by
(X, Yy =EX-Y)= fX(a)) -Y(w)dw.
Q

We denote by || - || its associated norm, i.e.
IIX]1? := (X, X) for all X € H.

The set H is a Hilbert manifold with a single global chart given by the identity map on H. The metric and the
natural Levi-Civita connection on H are linked to the metric and the Levi-Civita connection [17] [18] on P,(R%)
(cf. also [10]). The push-forward operator § : H — P,(R?) associates to X € H its law — the Borel measure
Xﬁ-[:f: — defined for any Borel subset B of R¢ by

(X LE)(B) = LL(X7'(B)).

The map § yields an equivalence relation on H: the class of equivalence of X € H is denoted by [X]y, the set
of Y € H which have the same law as X, denoted by }(X). Note that # is surjective since the optimal mass
transportation theory ensures [4] that any element of P,(R) is the law of the gradient of a convex function
¢:Q—>R.

If w is the law of X € H, v is the law of Y € H then (cf. e.g. [3])

Wiy = inf {EQIX = IP) « p =4, v = 4D}, (L.D)

Therefore, # is an isometry of the quotient space H/# onto P>(R¢). This is the first hint that the intrinsic
differential structure on P»(R?), introduced in [3], may be inherited from the differential structure on the Hilbert
space H. One may also suspect that the Levi-Civita connection on both spaces may allow to link the Hessian of
functions defined on P,(R%) to functions defined on H/{.

There is a special non-commutative group related to the isometry #§ : H/# — P, (RY), namely the set G(QQ)
of Borel maps § : Q — Q (they lie in H) that are almost everywhere invertible and have the same law as the
identity map id. The binary operation on G(£2) is the composition operation o and the orbit of X € H is the set
X-GQ)={XoS : S e G(Q)}. The set of orbits of (points X in) H generated by the action of G(Q2) form a
partition of H. We henceforth have another equivalence relation consistent with the right action of G(Q2) on H.
This is very helpful for developing our intuition to better understand #, but unfortunately the new equivalence
relation differs from that induced by §; indeed, X - G(Q) is strictly contained in its closure [X]y. This conclusion
follows from the fact that §(X) = #(Y) if and only if there exists a sequence (S,), C G(Q) such that (cf. e.g.
Lemma 6.4 [9])

}LH;||X— YoS,|=0.

In particular, this yields that the closure of G(Q) is the set S(Q2) of Borel maps which have the same law as id
(see Theorem 1.4 [5] for a refined result when d > 2).

We would like to understand how we can exploit the point of view that the quotient space H/# is isometric
to the Wasserstein space P»(R?) in order to make inferences on partial differential equations in the latter set.
Partial results in this direction were obtained in the one-dimensional case for “mechanical” Hamiltonians on
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P,(R) [15]. In the current manuscript, we go beyond offering a new point of view on the differential structure on
P, (R9) and the concept of subdifferential of functions on this set; we were successful in substantially advancing
the theory of existence and uniqueness of solutions to first order Hamilton-Jacobi equations on P,(R%).

The notions of viscosity solutions to the differential equations (either on H or on P,(R%)) we are concerned
with are expressed in terms of subdifferentials of functions. A few years ago, [3] introduced the concepts of
sub and super-differential for real-valued functions on P,(R%), intrinsic to the weak differential structure of this
space. For practical reasons, a need later arose to modify these concepts (cf. e.g. [2]). It is proved in [2] that
for A-convex functions on P,(R?) the definition of subdifferential in [3] is equivalent to that in [2]. A first task
completed in this paper is to show that the definitions of subdifferential in [2] and [3] coincide (with no need for
extra-assumptions, such as A—convexity). A second task completed is to compare the extrinsic definitions of sub
and super-differential of [9] with the intrinsic ones of [3]. For instance, we show that if U : P,(R%) — R and
U : H — R is its rearrangement invariant “lift” defined by

U=Uof, (1.2)

then the subdifferential of U at u € P,(M) is nonempty if and only if the subdifferential of U at some X, € H
such that #(Xo) = u is nonempty. This is further equivalent to the fact that the subdifferential of U at any
X € H whose law is y is nonempty. Let 9°U(u) denote the element of minimal norm of .U (u) and let 8° U(X)
denote the element of minimal L?(u; R¢)-norm of 4.U(X); we may express the L?>—subgradient in terms of the
Wasserstein subgradient as

°UX) =d°U(u) o X. (1.3)

The identity (1.3) is very subtle. First, it forces the level sets of X to be subsets of the level sets of 3°U(X).
Secondly, it implies that gradients of rearrangement invariant functions defined on H have a special structure.
Indeed, if, for instance, X is invertible, (1.3) implies that 9° UX)o X! belongs to the closure of VCLI. (R%) in
L?(u; RY), where u := #(X). Thirdly, a more general attempt to express elements of the subdifferential of U at X
in terms of elements of the subdifferential of U at u is doomed to fail even when d = 1. Example 3.20 provides
us with a function U, its lift U and ¢ in the subdifferential of U at X such that there is no & for which ¢ = £ 0 X.

The conclusion reached in (1.3), which plays an instrumental role in our study, has been obtained by relying
on two deep results: (i) Brenier [4] proved that for any u € P,(RY) there is a convex function whose gradient
pushes Lé forward to u. The existence of such a gradient map, which is referred to as an optimal map, is the
essence of the theory of optimal transportation. (ii) A remarkable result by Caravenna and Daneri [8] ensures
that given any convex function ¢ : Q — R, one can disintegrate Lf) into probability measures {v, : y € V¢(Q)}
such that each vy is supported by the level set {V¢ = y} and is comparable to the Hausdorff measure H*®, where
k(y)€{0,1,....d}.

The Levi-Civita connection on P,(R?) [18], allows for a definition of the Hessian of U under appropriate
conditions (cf. [10]). Indeed, assume that U is differentiable on P,(R?) in the sense that for any u € P,(RY)
the sets 0.U(u) and 0'U(u) are simultaneously nonempty. As commonly done in convex analysis, we refer to
the element of minimal norms in the subdifferential as the gradient of U at u and denote it by V,,U(u). For each
1 € Pr(RY), let us define

————PRY)
T P2(RY) := VCL(RY) .
We shall see that
Q.UW) + [T, P2 RY]* = 6.Uw),
which implies V,,U(u) € Z‘PZ(R‘} ).

We suppose that for any & € C2(R?; R?) the directional derivative

p= EURD = (VW UW), )y

is differentiable on P,(R?). (Here and thereon (-, -)u denotes the standard inner product of L?(u; RY) and || - Il
the associated norm.) In particular, if £, & € C2(R?; R?) and we set Vg, & = (V&)E], then

Hess Ulul(é1,£) = &(&(UIu)) - (Ve &)Ul
3
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is meaningful. Assume also U is twice continuously differentiable on H, viewed as an infinite dimensional
manifold. For X € H, denote by Hess UX) : Hx H — R the Hessian of U at X. One checks that, as a
consequence of (1.3), if u = #(X), then

Hess U(u)(é1,&2) = Hess U(X)(fl 0X,&0X) (1.4)
for any £, & € VC2(RY).

Contrary to the fact that the real valued function U : P,(R¢) — R has a unique rearrangement invariant lift,
given in (1.2), real-valued functions on

CPYRY) :={(w.&) : pePrRY), ¢ € L(w;RY))
may have several distinct lifts A on H x H, satisfying the invariance property
HX,0)=H(Xo0S,,08) (1.5)

for any S € S(Q). For instance, the function on CP,(R?) defined by
1
&) = Hw &) o= 5 f eCPudx),
R
admits infinitely many lifts on H x H satisfying (1.5), two of which are

N 1 . 1
HX, () = Enprojmgnz, Hi(X,{) = Engnz, (1.6)

For X € H,
LZ(Q;RJ)
FIX]={éoX : £ LX(w;RY)) :={poX : ¢ € CARI;RY)} , (1.7)

where p := #(X). While A, is the unique continuous lift of 7, the natural (see below) lift A comes with some
serious handicaps since it is far from satisfying the sufficient conditions employed by [11], [12] in order to prove
existence and uniqueness of continuous viscosity solutions in H. Indeed, H is not even continuous on H x H.
Thus, the extant proofs of existence and uniqueness do not work in this case.

We employ a workaround, based on studying some HJ equations with Hamiltonians that may, at a first
glance, look like “linearized”, “toy” Hamiltonians. These Hamiltonians depend on a functional parameter ¢ €
C=(R?) in the following way:

1
Hy(1,€) = & Vo) = 51V¢ll;

Define i
12(Q;R)
VF[X]:={foX : &€ ﬂ?z(Rd)} :={VgoX : ¢ € CL(RI} . (1.8)
If £ € Hand § o X := projyp(x,¢, then, thanks to the identities
€ V) =(§0X,VpoX)=({,VpoX),
the lift defined by (given a general Hamiltonian H on 7" P,(R%))
AX. ) = H(B(X). projg sy ¢) (1.9)
becomes |
Hy(X.0) = (. Vg 0 X) = 51Vg o XIP (1.10)

when H := H,. One checks that the theory in [11], [12] can be applied to the smooth Hamiltonians in (1.10).
The identity (note that this holds if and only if £ € ﬂPZ(Rd))

1
Sl = sup  Hy(u,£)
@eCH(RY)
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gives us our first glimpse that there may be ways to connect HJ equations on P»(R%) to HJ equations on H, even
when the lift in (1.9) cannot be directly used. From our perspective, the lift in (1.9) is arguably the most natural
lift for H satisfying (1.5). Indeed, for this lift, Theorem 4.4 shows that the identity (1.3) becomes directly useful
in the study of viscosity solutions of Hamilton-Jacobi equations.

Other works [1], [16] on Hamilton-Jacobi equations in the Wasserstein space deal with more general met-
ric settings and have various degrees of generality (either special types of Hamiltonians depending on metric
derivatives and/or concepts of viscosity solutions based on special types of test functions). It will be inter-
esting to investigate whether the measure-random variable duality approach used in this paper applies to such
problems.

In this work, our focus is on genuine first-order Hamilton-Jacobi equations in the Wasserstein space of type
(4.3) and (6.1).

2. Notation and Preliminaries

To emphasize the fact that most of the results proved in this manuscript are valid on spaces more general than
R?, we shall denote R? by M. Throughout this manuscript, P»(IM) denotes the set Borel probability measures
on M| of finite second moments. This is a length space when endowed with W,, the Wasserstein distance.

Given pu,v € Pr(M) we denote by I'(u, v) the set of Borel measures y on M x M, which have u as first
marginal, v as second marginal. We denote by I',(u, v), the set of y € I'(u, v) such that

W2(u,v) = f I = yPy(dx, dy).
MxM

We denote the first (respectively, second) projection of M x M onto M by n! (respectively, 72)
oy =x Xy =y

The space of uniformly continuous functions on H is UC(H) while the subspace of bounded functions in
UC(H) is BUC(H). The space UC,([0,T] x V) consists of those functions v : [0,7] X V — R which are
uniformly continuous in x uniformly with respect to ¢, and uniformly continuous on bounded sets.

Denote by L*(u) the set of Borel maps & : Ml — M such that [|£]] := fM |E(xX)u(dx) < oo. The union
Ugep,avn i) X P2(M) is denoted by CP,(M). The closure of VC*(M) in L?(u) is denoted by T Po(M).

We define ff : H — P,(M) by
$(X)(B) = LL(X"'(B)) forall X € H, Bc M

and, for any X € Hi,
X1y :={Y e H : §(¥) = #(X)}.

Recall from the introduction that we denote
GQ):={S : Q- Q : S isBorel, L%a.e. invertible, and § € [idaly},
where idg, is the identity map of Q. Also,

SQ):={§:Q—>Q : SisBoreland § € [idg]y}.

We say that a function m : [0,00) — [0, 00) is a modulus if m is continuous, monotone, nondecreasing,
sub-additive and m(0) = 0. A function o : [0, 00) X [0, c0) — [0, o) is a local modulus if o(-, R) is a modulus
for each R > 0 and o is continuous and monotone nondecreasing in each variable.

5
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[§

In this manuscript, if S is a metric space UC([0, T]xS) denotes the vector space of all real valued functions
U on [0, T]xS which are uniformly continuous on bounded subsets of [0, T]1XS and such that U(t, -) is uniformly

continuous uniformly with respect to 7 € [0, T'].

If X € H, F[X] is the closure of the set {f o X : f € C.(M;M)} in H. If { € H, the projection of { onto
F[X] is denoted by proj (4. If the closure of the set {Vpo X : ¢ € VC Y(M)} in H is used instead and denoted

by VF[X], then the projection of { € H onto this subspace is denoted by projy (<
IfV:H - RU{*co}, X, € Hand r > 0, we set

V(H +X) - V(X) - ({,H)
Al

VI X, 0) = ggﬂ{ L0 < |IHI <1},

If U : Po(M) — R U {+o0}, u,v € Po(M), and & € L?(u), then for any p € I'(u, v) we set

eu(n,€,7) = UW) = U) - fM Mf(X) - (v = x)y(dx, dx).

and then set

{eﬂ(v, &) }

s

e'[U]E,v) := sup Watty)

pelo(u)

e (UL, v) == pell"?(fl,v)

For r > 0 we set
U, &) = inf{e" [UNE,v) | v € Po(M), 0 < Wa(u,v) < 7},

and
e[U)(r, &) := igf{eﬂ[U](g, V)| v e Po(M), 0 < Wa(u,v) < r},

As a consequence of (1.1) we obtain the following remarks.

Remark 2.1. Let U : Po(M) — R U {+oo} and set U := U off : H — R U {+co0}. Then

(i) U is continuous if and only if U is continuous.
(ii) U is k-Lipschitz if and only if U is k-Lipschitz.

Lemma 2.2. If X, € H and = §(X), then there exists a unique vo € L>(u) such that
(boX, )= (b,vo)foranybe CZ(M,M).

Proof. The linear map L : L?(u) — R defined by
L) = (€0 X, )
is continuous. By the Riesz representation theorem there exists a unique vo € L?(u) such that
L(¢) = (£, Vo), for all £ € L*().

It is straight-forward to check that vy is the unique map with the stated properties.

It is easy to see that vy is the projection of £ onto F[X] (defined in (1.7)), so we denote
Vo = PrOjF[X]§ .
Remark 2.3. We shall also consider the set of v € L*(u) such that
(Voo X,{) =(Vo,v), forall ¢ € CZ(M),

2.1

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

which contains vo found in Lemma 2.2. Observe that if v satisfies (2.7), so does v + W for any w € L>(u) such

that V - (uw) = 0 in the sense of distributions.
6
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In the remainder of this section we consider
LeC(0,T]xHxH), LeC(0,T]xCPr(M))
bounded below and such that
L(1,X,& 0 X) = L(t, i1, &)
forallt € [0,T], X € H, u = §(X) (recall that this means u = X#Lg) and £ € Lz(y). We assume that there exist
ko > 0 and k; € R such that

kol|BII* = k1 < L(t, X, B) for all (¢, X, B) € [0, T] x H x H. (2.8)

Lemma 2.4. Assume L(t, X, ") is strictly convex for any (f,X) € [0, T] x H. Then for any (t,X) € [0, T] x H there
exists a unique v € L*(H(X)) such that vy minimizes

io := inf{L(t, X,vo X) : v satisfies (2.7)}. (2.9)

Proof. Since the set of v satisfying (2.7) is nonempty and L is bounded below, iy € R. By (2.8), any minimizing
sequence (V,), is bounded in L*(u) and so, is weakly pre—compact in L>(i). We may assume without loss of
generality that the whole sequence weakly converges to some vy € L?(i). Choose

n n

w, :=ZcZVk, cp >0, ZcZ:l

k=1 k=1
such that (w,,), converges strongly to vo. Observe that v satisfies (2.7). It remains to show that L(z, X, vooX) < i.
Let € > 0 be arbitrary. Assume without loss of generality that

Lit, X, v,0X)<ip+e€

for every n > 1. We have

n n
L, X, W, 0 X) < ) L X, w0 X) < ) lig+€) =g+ e (2.10)
k=1 k=1
and
lim[lw, o X — vg o X|| = lim [lw,, — voll,, = 0.
n n

By the continuity of L and (2.10)

L(t,X, vy 0o X) = limsup L(t, X, w, 0 X) < ip + €.
n

This proves that v minimizes (2.9). The strict convexity of L(z, X, -) ensures the uniqueness of vy o X, which in
turn ensures the uniqueness of vg. O

Definition 2.5. Assume L(7, X, ) is strictly convex for any (f,X) € [0, T]1 x H. Let (¢, X,¢) € [0, T] x H x H and
set u := §(X). Using the notation in Lemma 2.4,

(i) we referto { := v o X € H as the L-projection of { onto VF[X] (see (1.8)) and write { = projypx; 14

(ii) When L(B) = ||B|* for B € H, the L-projection is simply denoted projypx)$ and referred to as the
projection of { onto VF[X] (since it is easy to see that it coincides with the orthogonal projection of {
onto the closed subspace defined in (1.8)).

Proposition 2.6. Assume both L(f, X, ) and H(f, X, -) are strictly convex and of class C' for any (f,X) € [0, T] x
H. Let (1, X,{) € [0, T] x H X H. Then v o X = projyzx, ;£ for some v satisfying (2.7) if and only if

£:=VpL(t,u,v) € T,P>(M).
7
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Proof. Set u := #(X). Assume vo X = projypix;.z¢ and let w € L*(1) be such that V - (uw) = 0 in the sense of
distributions. For every r € R, (2.7) holds if we replace v by v + rw. Thus,

d - _
0= —Lt.X.voX+rwoX) = =(VsL(t.X.voX).WoX)
r r=

If L(t, X, -) is differentiable on H and L(z, , -) is differentiable on L?(x) then
VsL(t,X,v o X) = V,L(t, u, V). 2.11)
From this we deduce
0 = (VpL(t, 14, v), W).
Since w is an arbitrary vector such that V- (uw) = 0 in the sense of distributions, we conclude that & € 7,P,(M).

Conversely, suppose & € 7,P>(M). Let v € L?(u) such that (2.7) holds. Then V - (u(V — v)) = 0 in the sense
of distribution. We have

Lt,X,voX)>L(t,X,voX)+((oX,¥oX—-voX)=L(tX,voX).
This proves that v minimizes (2.9). By Lemma 2.4, v o X = projygx; i.- O

Remark 2.7. Assume both L(f,X,-) and H(t, X, -) are strictly convex and of class C' for any (f,X) € [0, T] x H.
Let (t,X,{) € [0, T] x H X H. Using the notation in Definition 2.5 we have

(i)
L(1, X, projypx 1$) < L(t, X, ), H(#, X, projypx 1{) < H, X, 0. (2.12)
(ii) We do not know if we can replace projypy ¢ by projypix& in (2.12), which is why we sometimes impose
the condition in this form when necessary.
We recall the following result:

Proposition 2.8. X, Xy € H have the same law if and only if for each positive integer n there exists S, € G(QQ)

such that 1

IXooS,—X|l < ; (2.13)

Proof. Clearly (2.13) implies that X and Xj have the same law. Conversely, if X € [Xg]y, then Lemma 6.4 [9]
implies (2.13). [

As a consequence, the following holds:

Corollary 2.9. Let X, Xy, € H and let {S,}, be as in Proposition 2.8 such that {Z,}, := {{ o S,}, converges
weakly to Z in H. Let & € L*(u) be uniquely defined by & o Xy := Proj pix, ¢ where p := #(Xo). Then £ o X =
Proj px)4-

Proof. Let & be uniquely defined by & o X := projy;{. For any ¢ € C.(M; M) we have

<§?¢>,u = <§’¢OXO> = <§OS119¢OXOOSn>~

As {0 S ,}, converges weakly to Z and {¢ o X, o S}, convergences strongly to ¢ o X we conclude that

<§’¢>,u = <Z9¢ o X) =: <§_:’¢>/4

Since ¢ is arbitrary, this concludes the proof of the Lemma. O
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Corollary 2.10. Let E : H X H — R be continuous and satisfy the invariance property
EX,0)=E(Xo0S,l08) (2.14)
forany map S € S(Q) and any X, € H. Then
E(Xo,& 0 Xo) = E(X,§ 0 X)

for any Xy, X € H such that $(Xo) = #(X) =: u and any & € L*(u).

Proof. Using the notation in Proposition 2.8, we choose S, € G(Q) such that (2.13) holds. By approximating &
in L?(u) with functions in C.(M; M) we get that (¢ o X, o S,), converges strongly to £ o X in H. Thus, by the
continuity of £ and the invariance property (2.14) we get

E(X,£0X) = lim E(Xg 0 S,,0Xg0S,) = E(Xo. & 0 Xo),

which concludes the proof. O

3. Differentiability of Rearrangement Invariant maps

Throughout this section, we assume that U : P>(M) — R U {+o0}.
Definition 3.1. Let u € dom(U).
(i) The weak—inf subgradient of U at i1 € P,(M) is the set of all € € L*(u) such that
Uwv)-U() > inf &(x) - (v — x)y(dx, dx) + o(Wa(u, v)),
velo(y) s

forv € P,(M). We denote this set by 6;”.U(/1).

(ii) We define the weak-sup subgradient by replacing “inf” with “sup” in the inequality above. We denote
this set by 95, U(u).

For u,v € P,(M) and y € I'(u, v), let be as defined in (2.2). We reformulate the above definition in terms of
optimal bounds on o(Wa(, v)). First, if 4 # v, we introduce the expressions

HY0.8) = inf 208D 3.1)

_ . e, (v, €, p)
H (v,€) == sup e Wola) .

pelo(u,y) W2(/‘7V) ’

Secondly, for any » > 0 we set

h(r,&) = inf{H (v,&) : 0 < Wa(u,v) <r},

h(r, &) = inflH*(1,&) : 0 < Walu,v) < 1.

Remark 3.2. For u € Po(M) and & € L*(u) the following hold:

(i) £ € 6;,fU(,u) if and only if lim,_o+ h™(r,&) > 0.
(ii) & € 93, U(w) if and only if lim, o+ h*(r,&) = 0.
(iii) For any v € P,(M) we have h*(Wy(u, v), &) < H*(v, £).

Lemma 3.3. For u,v € Po(M), any p, p € T'(u,v) and { € C*(M), we have

1
| fM V2 (= 0l d) = plae )| < SIV e[ =1 + ' =1
9
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Proof. Since p, p € T'(u,v),
fM M[§ ) = {0)][pldx, dy) — p(dx,dy)] = 0.

For any x,y € M there exists r € [—1, 1] depending on x and y such that
r
L) =40 = Vi) - (y—x) = EIIVzéllmlx -y

Since
| fM IV loly = P (p(dx. dy) — pldx. dy)| < IVlo(lir' = 7212 + i = 2*12),
X
we use (3.2), (3.3) to conclude the proof of the Lemma.

Proposition 3.4. Let y,v € P,(M), & € L*(u) and p, p € T,(u,v). If { € C2(M), then

o0& p) = €€ )| < (I9C s Walga, ) + 20 = V21, )Wal, )

Proof. First, we use the decomposition

eu(v,€, p) = eu(n, €, p) fM . Vi(x) - (x = y)(p(dx, dy) - p(dx, dy))

+

fM M(f(x) = V{(x)) - (x = y)(pdx, dy) — p(dx, dy)).
Next we apply Cauchy—Schwarz inequality to obtain
| fM 6@ = VL) - (x = »pidx. dy)| < I = V2l = 721l

Similarly,

| fM 6@ = VL) - (x = ypldx. dy)| < I = Vel = 721l

10

3.2)

(3.3)

34)

(3.5)

(3.6)

3.7

We use Lemma 3.3 to control the expression in the right hand side of (3.4) and combine this with (3.4-3.7) to

obtain the thesis.

Corollary 3.5. Let u,v € Po(M), let & € L*(u) and let { € CZ(M). Then

H* (&) = H (1, 8)| < IVl Walpt, v) + 211 = VL.
Theorem 3.6. For any u € Pr(M) we have

Proof. Let & € L*(u). By Corollary 3.5, for any ¢ € C2(M) we have

. + . — _ 2 _ _
ot H'0.8 2 il (H 0,8 = IVl Wae, ) - 20 = V2l

> . — _ 2 _ _
> (058 = IV%¢llor = 21 = VEll)

In terms of A%, this reads

W (r,€) 2 (1, €) = IV*Lllor = 21 = V|,
which, together with the fact that ~* < h~, implies

lim h™(,8) > Tim (1,8 2 lim h™(r, ) = 2 - V2l
10

O
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If, in addition, ¢ € 7,%>(M), then we can choose ¢ so that [|¢ — V/]||, is arbitrarily small and conclude that
lim h~(r, &) = lim h*(r, &).
r—0+t r—0*
We use Remark 3.2 to conclude the proof of the Theorem. O

If y € T'p(u, v) then (cf. [3]) the barycentric projection of y, of base u, belongs to 7,%,(M) and so,
f w(x) - (y — x)y(dx,dy) =0
MxM
1
for any w € [ﬂPZ(M)] . Thus,

L
0 UG) N T P2V + [T, P2 M) | = 6, U ) (3.8)
and N
05y U) N T, P2 (M) + [‘T#PZ(M)] = 04, U(W). 3.9
Thanks to Theorem 3.6, we can use (3.8) and (3.9) to obtain the following proposition.

Proposition 3.7. If U : P,(M) — R U {£oo} and u € dom(U), then ai_nfU(“) =0, U(u). We define

sup

I Uu) = 8;,Uu) = 85, Uw).

Definition 3.8. (i) We define the weak-sup supergradient of a function U : P,(M) — R at u € P,(M) as the set
of all € € L*(u) such that

Uv)=U) < sup f £(x) - (v = 0) y(dx, dy) + o(Wa(u, v))

yel,(uy)

Sforv € P,(M). We denote this set by 97, U(u).

sup

(ii) We define the weak-sup supergradient by replacing “sup” with “inf” in the inequality above. We denote
this set by agqu(y).

Since
35 UG = =3, (— U)@) and 3%, UGw) = =35, (~ U)u),

Proposition 3.7 implies:
Proposition 3.9. For any U : Pr,(M) — [—o0, 0o] and any u € Pr(M) we have 6;1 f.U (W) = 6;’MPU (W), which will
be denoted by 8*U(u). Also, *U(u) = -0~ (— U)(w).

We define

A UW) :=0"Uw) NT,P>(M) and 9°Uu) := 0" Uu) N T, P>(M)

Theorem 3.10. The set 0,U(u) N 0°U(w) has at most one element.

Proof. If &, £ € 0-U(u) N 0" U () N T,P>(M), then for any sequence {1}, C Po(M) such that Wa(u, i) — 0
and any sequence of plans {y,}, such that y, € I',(u, ) for all n, we have

f [£(x) = Z(0)] - (v = x) Yuldx, dy)
=0. (3.10)

lim
oo Wa (. 1)
Choose u, := [Id + n’1V¢]ﬁ,u for some non-identically zero ¢ € C!(R?). For sufficiently large n we have that

Co(u, ) = {[Id x (Id + ”_1V¢)]W}’ 50 (3.10) yields (¢ — £, V)12 (ure) = 0. Since ¢ is arbitrary, we are done. [J
11
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Definition 3.11. We say that U : P,(M) — R U {xo0} is differentiable at u € dom(U) if 0~ U(u) N d*U(w) # 0.
In this case, according to Theorem 3.10, there exists a unique & € T,P>(M), which we now denote by V,,U(u),
such that (using the notation in (2.2))

e ns VWU ’
el UGy

n—oo WZ(Ha ,un)
for any sequence {u,}, C Pr(M) such that Wy(u,u,) — 0 and any sequence of plans {y,}, such that y, €
I, (u, ) for all n.

@3.11)

Lasry and Lyons have introduced another, less intrinsic, notion of differentiability by associating to each
function U : P>»(M) — R amap U : H — R given by

UX) := UXyP),

where (Q, B(Q), P) is a non-atomic probability space. Each u € $,(M) corresponds to a random variable X on
the probability space (Q, B(Q), P) via u = XyP. The range of the operator U U is the set of all functionals
V : H — R such that

X, YeH, XP=YVP = VX =V(Q).

We are particular about this probability space, and recall that we have chosen Q to be the ball in R¢ of unit
volume and centered at the origin, while P := Lg. This will give us access to the powerful tools of Optimal
Transport; in particular, to any u € $,(M) there corresponds a unique random variable which is Lebesgue a.e.
equal to the gradient of a convex function. This fact will be of crucial importance in the sequel. Also, recall
that we have called functionals such as U above rearrangement invariant, R.1. for short. In the sequel we shall
denote by 9*V(X) the super (sub, respectively) Frechét gradient at X € H. As in (3.1), for X, Y, { € H we define

V) -VX) - (.Y -X)
Y - Xii

HIX](Y,{) := (3.12)

and 5
hX1(r,0) = iI;f{H[X](Y, O:0<|lY=-X|I <7}

Remark 3.12. For X, { € H the following hold.

(i) ¢ € &~ V(X) if and only if lim,_o+ A[X](r,¢) > 0.
(iii) For any Y € H using the notation of e[V] in (2.1) we have

eVIX Y = XI1,0) < HIXI(Y, ).

Lemma 3.13. Let X € H, p := #(X), and let ¢ € L*(1). Let € > 0, v € P>(M) and let y € To(u, v). Then there
exists Z € H such that the following hold:

D) v =H#2Z);
@) 11X = Z|| £ e + Wa(u, v);
(iii) For any ¢ € C}(M; M) we have
[ e 0= - piaxay)
MxM
< Wa(u |G+ OllE - Bl + elIVlla Wau v) + elléll .
where V¢ denotes the Jacobian matrix of ¢ and we have set
p=H#XxZ)eTl(uv). (3.13)

12
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Proof. Choose a random variable A = (S,7T) € L*(Q;R¢ x RY) such that §(A) = y. Due to the marginal
properties of vy, we have u = §(S) and v = #(T). Also, by the optimality of y we have that

Wau,v) = IS =TI (3.14)
By Lemma 6.4 [9], there exists a measure preserving (preserves .Eg) map 7 such that
[1X =S ot < Wa(u, v)e. (3.15)
Thus,
IX=Tot||<|X=Sot||+]||Sor—=To1| < eWalu,v) + Wa(u, v). (3.16)

Set
Z:=Tot, Y:=Sort.

Note that (i) and (ii) are satisfied.
Let ¢ € C1(M; M). We have

[€oY.Z-Yy—(£0X,Z-X)| oY —pov.Z-Y)
($oY.Z-Y)~(poX.Z~X)|
[poX-¢0X.Z2-X)

oY —por.Z-Y)
[(poY-9oX,Z-Y)|+[(poX,.X-Y)

[poX-¢0Xx.2-X)|.

N+ + A

+ o+

We conclude that

IA

[€oY.Z-Y)—((0X.Z-X)| ll€ = pllullZ - Y1l
IV@llaellY = XIIZ = Y1l + [l 1Y — XII

€ = ¢ll.l1Z = XII.

+ +

This, together with (3.14 — 3.16) implies

(E0X,Z= V)= (0 X,Z=X)| < Walut, )| @ + O = Bl + IVl Waliz, ) + el |

We use the inequality [|¢ll,, < [|€ — ¢ll, + [|€]|, to conclude the proof. L]

The above lemma is useful for proving:
Theorem 3.14. Let X € H, u := #(X) and & € L*(u). Then:

(i) € o X € ~UX) implies & € 0~ U(u). The converse holds if ¢ € T P (M).
(ii) &€ o X € 0*U(X) implies & € 0*U(u). The converse holds if ¢ € T, Pr(M).

Proof. We will only prove the first statement as one can obtain the second one by duality.

Part I. Assume & € L?(u). Let r > 0 and v € P,(M) be such that 0 < Wa(u,v) < r. Let y € T'y(u, v). By Lemma
3.13, we can find Z € H such that (i) — (iii) in the Lemma hold for € = rW,(u, v). In terms of the bistochastic
measure p defined in (3.13), we have

e (&) =U2) - UX) - (€0 X, Z~X) - f £(x) - (v = 0)(y — p)dx, dy).

MxM
13
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Thus, by Lemma 3.13 (iii), we have, for any ¢ € Cg (M; M),

eu(n&7) U2)-UX)—(£0X,Z—-X)
Wau,v) — Wa(u, v)

— B+ ollE — ¢l — ellVRlle Wals, v) — €lléll,,

and so,

Q&) - Cplz=xi
Waty) - ANCREE G5

If ¢ 0o X € 3~ U(X), then for § > 0 we can find ry > 0 such that e[T](2r, X, & o X) > —6 for any r € (0, ry). We
conclude that for such r, due Lemma 3.13 (ii), we have

=G+l = ol = €ellVPllea Wals, v) — €llélly-

eﬂ(y’f’ 7) HZ_X”
Wawy) 2 =0 Watav) B+ ol = lly = rlIVelleo Walu, v) — €lléll,

=51+ 1) = B+ lE = Blly = PIIVBlleo — Il

v

We first minimize over (v,y) to conclude that

W (r,€) = =6(1 + 1) = B + )l = Bllu = P IVPllew = Il

Hence,
}f& h*(r,€) = =6 = 3||€ = ¢l|,..

Since ¢ > 0 and ¢ € C!(M; M) are arbitrary and ¢ € L>(u), we have lim, o+ h*(r,£) > 0. Hence, & € 0~ U(u).
Part II. Conversely, assume & € d.U(u). Let r > 0 and Y € H be such that 0 < [|¥ — X]|| < r. Set

vi=§(Y), y:=H#XxXY),

and pick any y, € I'y(u, v) and any ¢ € C!(M). We write the decomposition

U0 -0X) (o X,Y=X) = Um-U - MMf(X)'(y—X))’o(dx,dy)

- f [£0) — Vo] - (v — x)(y = o), dy)
MxM
- f Vo(x) - (v = (¥ = 0)(dx, dy).
MixM
We combine Lemma 3.3 with (3.6 — 3.7) to obtain
O¥)-U0X) - (€oX,Y-X) > UG -UQ - fM 00— 0y(dx.dy)
= 1IE = Vell(IY = X1 + Wa(u, v))

1
IVl (1Y = XIP + W3Ge, ).

We divide the above identities by ||Y — X]|| and use the fact that W, (u, v) < ||Y — X|| < r to obtain

U() - UX) - (£oX,Y - X) > It (r g)Wz(H,V)

= 2/I€ = Vell, — rlIV¢lle
1Y - X|| Y - X|| .

For every € > 0, there is ry > 0 such that for r € (0, ry), h*(r, &) > —e. For such r we have

UY)-UX)-(oX,Y -X) o
1Y - X B

14
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We use the fact that Y is arbitrary to conclude that
7 2
e[UN(r, X,§ 0 X) > —€ = 2[I§ — Volly, = rIV7¢lleo,

and so,
11153 e[U12r, X, &0 X) > —€ = 2||€ = V..

By the fact that € > 0, ¢ € C! (M) are arbitrary and & € T . P>(M), we conclude that lim,_,- e[U1(r, X, £0X) > 0,

ie. £0X e UX). O
As an immediate consequence of the above theorem and the definitions of d, and 0°, we deduce:

Corollary 3.15. Let X € H, u := §(X) and ¢ € T,P>(M). Then the following hold:

(i) € € 0,U(u) ifand only if ¢ o X € 0~ U(X);
(ii) &€ € 0°U(u) if and only if € o X € 3" U(X).

3.1. Subdifferential of R.I. functions

If X € H is a Borel map, we denote u := #(X). Then we know Lg disintegrates with respect to u as

f £ dx = f f £02) 1y (d2) (), (3.17)
Q R Jx-1(y)

where {uy}yera 18 a family of Borel probability measures such that:
ORYsy- 1y(B) is Borel for any Borel B C Q;

(ii) ,uy(Q\X‘l(y)) = 0 for y-a.e. y € R%.

Using u = X3 L2, we rewrite (3.17) as

f &(x)dx = f f £(2) px o (dz) dx. (3.18)
Q Q Jx(x )

We denote v, := px(y and note that (i) above, along with the Borel measurability of X, implies Q 3 x = v.(B)
is a Borel map for any Borel set B ¢ Q (as a composition of Borel maps). Note also that v, = v, for all z € Q
such that X(z) = X(x) (or, equivalently, for all z € X~ 1(X(x))).

For any integer m > 1 denote by B,, the open ball centered at the origin in R™ such that L"(B,,) = 1.

Theorem 3.16 below is a collection of deep results, proved in [8].

Theorem 3.16. Let @ : Q — R be convex, set X := VO and let (3.18) be the disintegration of .Eg with respect
to the level sets of X. Then:

(i) For every x € Q at which ® is differentiable X~'(X(x)) is a convex set of Hausdorff dimension k(x) €
{0,1,...,d}.

(ii) If for each k € {0, 1, ..., d} we denote

Q= {xeQ : X '(X(x)) has Hausdorff dimension k},

we have that Qy is a Borel set for each k € {0, 1, ..., d).
(iii) For L%-a.e. x € Q at which ® is differentiable we have that

HO « v, < HO,
Moreover, for each k € {1, ..., d} for which Qy # 0 there exist Borel maps
o B xQp » Q  and o : By X Q — [0, 00)

15
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such that o (-, x) is invertible, (z,x) — ow(-, x)"'(2) is Borel, and ax(-, x) is a positive probability density on
XY (X(x)) for all x € Q. Furthermore,

f (2)v(dz) = f o(ok(s, X)) (s, x) ds for all ¢ € C(Q), (3.19)
X-1(X(x) By
and
f Yo ) @Ivaldz) = f W(s)ai(s, x) ds for all y € C(By). (3.20)
X1(X(x)) By

Note that the map o7(-, x) is a reparametrization of the k-dimensional convex set X~ (X(x)), which maps B, onto
X~1(X(x)) and pushes a;(-, x) forward to vx(y. For the Borel measurability of o and a; see Proposition 4.17
and Theorem 4.18 [8] (notation is different from ours).

Theorem 3.17. Let @ : Q — R be convex such that VO =: X € H. Let U : H — R be R.I. and assume there
exists a Borel map ¢ € H such that ¢ € 8~ U(X). Then

projpx ¢ €0~ U(X) and Projypx ¢ € 0” U(Xx.

Proof. Let {X,}, C H be a sequence of Borel maps such that O < ||X,|| = 0. For any integer n > 2 let {B]'},, be
a countable partition of Borel subsets of R? of diameter at most ||X,||>. Fix 1 < k < d and x € Q. Let A(-, x)
be the optimal map that pushes LkIBk forward to a(-, x)L* Is,; we also know that its inverse Ag(-, x)~! pushes
(-, x) Lk g, forward to .Lkhﬂgk. Since (s, x) — a(s, x) is Borel, we use Appendix 9, Corollary 9.8 to conclude
that, after possibly redefining them on negligible sets, the maps (s, x) — Ax(s, x) and (s, x) = Ax(-, x)7'(s) are
also Borel. So, the map (s, x) — o (Ar(s, x), x) =: Ax(s, x) is a Borel map with the property A.(:, x)nghB;k =V
while Ai(-, x)71(2) := Ax(,x)™! o o4(-, x)'(2) is a Borel map such that Ak(-,x)ﬁ‘lvx = L¥g,. Let Gy : By —

By x By be invertible such that G, G;' are Borel maps and Gy L*|5, = L[5, ® L¥|z,. Let

E(z, %) 1= (MG (ARG, )71 (@), x), Al(GHA (-, 1) (2)), X))

Note that the maps
S (2, %) := Xo(E}(z, X)), Tin(z, x) := {(ER(z, X))

are Borel and satisfy
[Sk,n(', )C) X Tk,n(" -x)]ﬁvx = ﬂn,x N, =: Vn,xs

where 4, , := X,yv, and i, := {yv,. This implies

f Xn(2)vi(dz) - f {(2)vx(dz)
X-1(X(x)) X 1(X(x))

f X1+ X2 Yux(dxy, dxz) (3.21)
MxM

<S k,n(’, .X), Tk,n(" x))VX'

We have that Ty, (-, x)yv = {yv, implies
LKA BM)) = LAGH ™ o A, )T BMY) =i

We restrict our attention to the set M of all m for which r > 0 and we consider the optimal map %’,‘,’m(g x)
which pushes Lk'Ak(gx)*l({"(Bﬂ’)) forward to £k|(Gz)—lOAk(,’x)—l((—](Bnm)). Since (z,x) = Ay(, %) (z) and (z, x)
(G)™" o Ay(-,x)""(z) are Borel maps and ¢~'(BY") is a Borel set, it follows by Appendix 9, Corollary 9.9 that
(z,x) ‘Fﬁ‘m(z, x) can also be taken to be Borel, which further implies (z, x) + %’;!m(gx) o Ar(-, %) (2) =
% ,,(z, x) is a Borel map. This map satisfies 7%, (-, X)gV.lr, . .o-1 By = Vile-1am-

Let 78(, x) := Y em Tﬁ’m(‘, 017, .0-1(sm defined on € X O to see that
k k 2
T, X)ve =v,  and  |[Ty,( %) o 7,( %) = <l < X7

16
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This yields .
(Zpn (s ), Oy 2 (S knCos X, Tien o Yy, = Xl PIXo .

if we set Z ,(z, x) := Sk,n(T’,;(z, x), x) for z € Qy and x € Q. By (3.21), we infer
f Xu(2)vi(dz) - f L@vildz) < Zin( ), Oy, + Xl PIXlly, (3.22)
X-1(X(x)) X1(X(x)

for every x € (. Let Zk,n(~, x) denote the extension by zero of Zk,n(-, x) outside X~'(X(x)). Next let us define
Zin : Q — R4 by Zj(x) = Zk,,,(x, x) if x € Q and Z; ,(x) := 0 otherwise. Since (z, x) Zk,n(z, x) is a Borel
map from € X € into R4, we deduce Z., 1s a Borel map from Q into R4. Let Zon = X,1q, (a Borel map) and
define Z, : Q - R by Z, := Zg:o Zin. Thus, Z, is Borel. In fact, Z, € H and the property Z; ,(z,2) = Zin(2, X)
for all x € ©Q; and all z € X~ '(X(x)) N Q ensures that

ZLd = Xy L8 and (X + Z,)4LE = (X + X, )4 LY
for all n. So, by the rearrangement invariance of U and the fact that £ € 3~ U(X) we have

UX +X,) = UX) = (¢, Za) S

lim inf 0. (3.23)
n—e (1 X |
Next let
&) = f {(Dpy(dz) forp—ae. ye M

X-1(y)

so that
EoX(x):= f L(2)vy(dz) for LT —ae. x € Q.
X1(X(x)

Note that (¢ o X — ¢, ¢ o X) = 0 for all ¢ € C.(M; M), which is equivalent to the fact that & o X = projx,{. By
(3.22) we get, after integrating in x with respect to the measure £9|q and using the fact that

f Xl dx < 1+ f I1X, 112 dx
Q Q

1+ f f X, (@) Pra(d2)dx
Q X*I(X(x))
1+ 1X,I1%,

the inequality
(&, Za) + IIXP (L + 1X]1P) = (€0 X, X,,),

which, in light of (3.23), yields
projpx{ =0 X € 7 UX), (3.24)

which, by Theorem 3.14, is equivalent to & € 3~ U(u) (where u := §(X)). This yields
& 1= projyp,ané € 0 U(p) € 9 U(w).
Theorem 3.14 now implies £ o X € 3~ U(X). However, since
(=& fHu=0forall f €T, Pr(M),

we conclude
(£, foX)= (& fyforall f €T, Pr(M).

But € € 7,P>(M), so (2.7) and Proposition 2.6 yield £ o X = projy rix1$- The proof is completed. O

17
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Remark 3.18. The Borel measurability of the map Z, in the above proof was obtained from the (joint) Borel
measurability of the maps Ay, Ay etc. This is the object of Appendix 9. In fact, there we proved something more
general, which may have its own appeal to the reader; we showed that if one has two one-parameter families
of probability densities which are Borel measurable (jointly with respect to their variables and the parameter),
then the optimal maps between these densities are jointly Borel measurable as well.

Theorem 3.19. Let X, Xo € H be such that X € [Xoly (recall that this means X and Xo have the same law). Let
(S} € G(Q) be a sequence as given by Proposition 2.8. If U : H — R is R.I, then the following hold:

(i) If ¢ € 0~ U(Xo), then every point of accumulation  of {{ oS ,}, for the weak topology satisfies € 0~ U(X).
(ii) 0~ U(Xy) # 0 if and only if - U(X) # 0.
(iii) If { € 0~ U(Xo), then projpx, ¢ € 0~ U(Xo) and projypx, ¢ € 0~ U(Xo).
Proof. Since we can replace ||Xp o S, — X|| by || X o S;' — Xpl| in (2.13), (i) readily implies (ii).
Thus, it is enough to prove (i). For that, fix r > 0 and pick H € H arbitrary such that 0 < ||H|| < r. Set
H,:=XoS,'+HoS,;' - X,

so that
H,0S,=X+H-Xy0S,. (3.25)
‘We have
UX+H) -UX)=UXoS,'+hoS;")-UX)=UX, + H,) — UXo),
and so,
UX+H)-UX) - (. Hy = UXo + Hy) - UXo) = ({, Hy — (X = S, = Xp)).
Thus,
UX+H)-UX)~ (%, H) 2 e[U](IIHn -(x-5," —Xo)ll,{)- (3.26)
Observe that
P < 2(1X 0 S;" = Xol* + IH o S ;'IP)
and |
IX oS, = Xoll < - IH oS, = [IH]|.

Thus, for n > r~! we have
1
IHIP < 2(= + IHI?) < 477,
n
This, together with (3.26) yields

UX +H) = UX) = (£, H) = e[ U121, ). (3.27)
Since || o §,|| = ||£]] for all n, we may assume, without loss of generality, that the sequence
(& :=C08,}, — £ weakly in H. (3.28)

By letting n tend to oo in (3.27) we obtain
UX + H) - UX) = (, hy = e[U]1(2r, ).
Consequently, e[U](r, ) > e[U](2r, ). This proves that if € 9~ U(Xy), then Z € 3~ U(X).

To prove (iii) let u := #§(Xp) and set X := M(X,), where M(X;) pushes Lg forward to u and is the gradient
of a real valued convex function defined on Q. By (ii), £ € 6~ U(M(Xy)), which, in light of Corollary 2.9 and
Theorem 3.17, implies

& o M(Xo) = proj il € 0 U(M(Xo)) and & € 6~ U(p).

Theorem 3.14 and Corollary 2.9 then show projzx¢ := £ o Xo € 9~ U(Xy), and, as in the proof of Theorem
3.17, this further implies that projyy, ¢ € 9~ U(Xo). O
18
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It is natural to ask whether any element in the sub or superdifferential of U at X is in F[X] (so that { =
projix¢)- The following example shows that that is not the case.

Example 3.20. Letd = 1 and X = 0 in Q = [0, 1]. Define the map U:-H->R by U(X) := (Id, M(X)), so that
U(Xy) = 0. Since
1d = MOOI = Wa(LS, #0) < [I1d - X]|,

we deduce
U(X) - U(Xo) > (Id, X — Xo) for all X € H.

Thus, 1d € 8- U(X,) even though 1d ¢ F[Xy] (as F[Xo] is the subspace of L*(Q) consisting of functions which
are Lebesgue a.e. equal to constant functions).
We combine Theorems 3.14 and 3.19 to conclude:
Theorem 3.21. Let U : Pr(RY) — R and set U := U o §. Then the following are equivalent:
(i) 0*U(u) # 0;
(ii) 0*U(X) # 0 for some X € H such that pu = §(X);
(iii) *U(X) # 0 for all X € H such that u = §(X).

Corollary 3.22. Let X € H and let U : P»(RY) — R. Set u = #§(X) and set U := U o §. If ¢ is the element of
minimal norm of 0*U(u) and { is the element of minimal norm of 3*U(X) then { = £ o X. In particular;, U is
differentiable at y if and only if U is differentiable at X. In this case, V2 U(X) = V,,U(uo) o X.

Proof. 1t suffices to prove the corollary in the case of the subdifferential. Suppose ¢ is the element of minimal
norm in 8~ U(u) (which must necessarily lie in d, U(u)) and ¢ is the element of minimal norm in 8~ U(X) Since,
by Theorem 3.19, projyzx¢ belongs to 9~ U(X), we obtain Projyrix)¢ = ¢ and so, there exists & € T,P>(M)
such that £ = € o X. But ¢ € 8~ U(u) implies, by Theorem 3.14, £ o X € 9~ U(X), and so the minimality property
of £ implies

1€l = 21 < 1€ o XII = [I€]l, (3.29)

with a strict inequality unless { = £ o X, Lg a.e. Since £ o X = ¢ € 8,U(X), we use Theorem 3.14 again to see
that & € 8~ U(u) and so, by the norm-minimality property of &

€l < 1€l = 1111 (3.30)

with a strict inequality unless € = &, u-a.e. We combine (3.29) and (3.30) to infer = £ 0 X, L{ ace.

Recall that U is differentiable at y if and only if both sets 9* U(u) are nonempty. This is equivalent to saying
that both sets 3*U(X) are nonempty, which in turn is equivalent to saying that U is differentiable at X. The
identity V,>U(X) = V,,U(u) o X follows. O]

4. Hamilton-Jacobi equations in the Wasserstein space

Throughout this section, we are given H : [0, T] X Ugep,am{ip) X R x Lz(p)} — R. We define A : [0,T] x H x
R xH — R by
H(t, X, r,{) := H(t,§(X), r,£), where ¢ o X = projypx{. 4.1)

One important invariance property of H is stated below.
Lemma 4.1. For every S € S(Q) we have
H(t,Xo0S,r,l08)=HtX,r/?) 4.2)

forall (1,X,r,0) € [0, T] x H xR x H.
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Proof. It is easy to see that projy (¢ = Projyrix.s(¢ © ), which yields the desired thesis in view of (4.1). [J

Consider the Hamilton-Jacobi equation
O U(t, ) + H(t, p, U(t, 1), Vi, U(t, ) = 0 for (¢, ) € [0, T) x Po(MD), 4.3)
together with its counterpart in H

3,0, X)+ H(t, X, U(t,X),VU(t, X)) = 0 for (¢, X) € [0, T) x H. 4.4)

4.1. Definition for time dependent HIE

Definition 4.2. Let U : [0,T) X P,(M) — R be locally bounded and Uy : P,(M) — R.

(1) We say that U is a viscosity subsolution for (4.3) with initial data Uy if U is upper semicontinuous and
UQ,) < Uy in Pr(M) and 6 + H(t,u, U(t, 1), &) < 0. 4.5)

SJor any (t,u) € [0, T) X Po,(M) and (0, &) € 0°U(t, w).

(2) We say that U is a viscosity supersolution for (4.3) with initial data U if U is lower semicontinuous and
UQ©,) > UyinP,(M) and 0 + H(t,u, U(t, 1), &) = 0 4.6)

Sfor any (t,u) € [0, T) X Po(M) and (0, ¢) € 0.U(t, w).

(3) We say that U is a viscosity solution for (4.3) with initial data Uy : P,(M) — R if it is both a viscosity
subsolution and supersolution.

Similarly, the corresponding objects are defined in H:
Definition 4.3. Let U : [0,T) x H — R be locally bounded and U, : H — R.

(1) We say that U is a viscosity subsolution for (4.4) with initial data Uy : H — R if U is upper semicontinuous
and
U©,)<UyinHand 6+ H(t, X, Ut,X),0) <0. 4.7

forany (t,X) € [0,T) x H and (0, ¢) € 8*U(t, X).

(2) We say that U is a viscosity supersolution for (4.4) with initial data Uy : H — R if U is lower semicontinuous
and
U,)>UyinHand 6+ H(t, X, U(t,X),0) > 0. (4.8)

forany (t,X) € [0,T) x H and (8,¢) € 8- U(t, X).

(3) We say that U is a viscosity solution for (4.4) with initial data Uy : H — R if it is both a viscosity subsolution
and supersolution.

The equivalence between these notions is given by:

Theorem 4.4. Let Uy : Po(M) — R be given and define Uy : H — R by Uy(X) = Uy($(X)). Then the following
hold:

(1)IfU : [0,T)xPr(M) — R is a viscosity subsolution (resp. supersolution) for (4.3) with initial data U, then
U:[0,T)xH—->R given by Ut,X)=Ut X)) isa viscosity subsolution (resp. supersolution) for (4.4) with
initial data U,

(2)IfU : [0,T) x H — R is an R.I viscosity subsolution (resp. supersolution) for (4.4) with initial data U,
then U : [0,T) x P,(M) — R given by U(t, (X)) = U(t, X) is a viscosity subsolution (resp. supersolution) for
(4.3) with initial data U,,.
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Proof. We will only analyze the case of subsolutions below; the same argument settles the case of viscosity
supersolutions.

1. Let (8,0) € 0*U(t,X) and denote y := #(X). From the rearrangement invariance of U(t,-) we deduce, by
Theorem 3.19 (iii), that (6, & o X) € 87 U(t, X), where £ o X := projyrx;$- Now we use Theorem 3~.14 once again
to deduce that (6,&) € 0°U(t,u), and so 6 + H(t,u, U(t, 1), &) < 0. We use (4.1) to infer that U is a viscosity
subsolution for (4.4).

2. If (6,&) € 0°U(t,u), Theorem 3.14 implies that for any X € H such that 4 = #(X) we have (4,¢ o
X) € 0+U(t,X); we deduce 6 + H(t, X, U(t,X),£ o X) < 0. But u = #(X) implies H(t, X, U(t,X),& o X) =
H(t,u, U(t, ), &), so if Uisa viscosity subsolution for (4.4), then U is a viscosity subsolution for (4.3). O

When are we guaranteed that viscosity solutions to (4.4) are R.1.?

Proposition 4.5. Assume H : [0,T] x Hx R x H — R satisfies (4.2). Assume that (4.4) for H has a unique
continuous viscosity solution U with U(0,-) = Uy, where Uy is continuous and R.I. Then U(t,-) is R.L for all
te[0,T].

Proof. First we shall prove that for any S € G(Q) we have that V(¢,X) := U(t,X o S) is a continuous viscosity
solution for (4.4) with initial data V(X) := Uy(X o §). For that, let (0, ) € 0*V(z, X), so that

U@, YoS)-U(t,X08)<O(s—1)+{,, Y —X)+o(s —t| + ||Y = X|).
But S is invertible (with S ~! measure preserving), so the inequality above is equivalent to
U, Y)-Ut,X0S)<O(s—0)+(YoS =Xy +o(s—t|+|[Y o S~ = X])),
or, further, to
UG, Y)-Ut,X0S)<O(s—)+(0S,Y=XoSY+o(s—t|+]||Y =X o S|,

Clearly, the inequality in the last display is equivalent to (6, o S) € 8*U(t, X o S). By the hypothesis, we infer
0+ H(t,Xo0S,Ut,Xo0S),,0S) <0, which, by the invariance property (4.2), implies V(¢,X) = U(t,X o S)
is a continuous viscosity subsolution for (4.4) with initial data Vo(X) := Uy(X o S). Likewise for continuous
supersolutions, so V is a continuous viscosity solution for (4.4) with initial data Vo. But V = Uy, so by the
assumed uniqueness of continuous viscosity solutions, we infer U(t, X) = U(t, X 0 §) for any (¢, X) € [0, T] x H
and any invertible, measure-preserving map S. We conclude by using Proposition 2.8 and the continuity of
U, -). O

We are now ready to formulate:

Corollary 4.6. Let Uy : P,(M) — R be continuous and assume further that for H : [0,T] x Hx R x H — R
given by (4.1) the problem (4.4) possesses a unique continuous viscosity solution U for the initial data Uy(X) :=
Uo(H(X)). Then U is R.1. and the map U(t, §(X)) := U(t, X) is the unique continuous viscosity solution for (4.3)
with initial data U,,.

Proof. Existence for (4.3) follows from the existence assumption on (4.4), by Proposition 4.5 and Theorem 4.4
(2). Uniqueness for (4.3) follows from the uniqueness assumption on (4.4), by Theorem 4.4 (1). O

Remark 4.7. Note that we only need continuity for the map X — U(t,X) for all t € (0,T] in order to prove
Proposition 4.5 (and, consequently, Corollary 4.6).

At this point it is tempting to seek conditions on H which guarantee that (4.4) has a unique solution. Fol-
lowing [11] and [12], we would like Hto satisfy the conditions listed below.
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There is a local modulus o such that
|H(t1, X1,r1,00) — H(t2, X, 12, O < oIty — o] + |11 = ral +11X1 = Xall + 11 = &l R) 4.9

for all (¢;, X;, r;, &) € [0, T] X H x R x H such that |r;|, || X;l|, ||| < R fori = 1,2.

There is @ > 0 such that
r H(t,X,r,{) + aris nondecreasing (4.10)

forall (£, X,¢) € [0, T] x H x H.
There is a local modulus oy such that
Ht, X, r,0) = Ht, X, r,{ + 2(X)) < o, A+ 111D (4.11)

whenever A > 0, and (7, X, r, ) € [0, T] X H X R x H such that || X|| > K (for some K > 0). Here #(X) = X/||X]|
for X # 0.

Finally, there is a modulus my such that
Ht Y, r, 20X -Y)-Ht X, r, 20X - 1)) <myQIX =Y+ IX - Y| (4.12)

forall X # Y € H, (t,r) € [0,T] x R and A > 0.

4.2. Affine Hamiltonians as cornerstone cases for convex Hamiltonians

Let
b:[0,T] XM x Pr(M) » M

be continuous and such that
for any (z,u) € [0, T] X Po(M) the map b(t, -, 1) € T, P>(M). (b1)

Let
H(tuu7 r, é:) = <b(t’ ‘,/J), {:)ﬂ + T(t’/l’ r)-

Remark 4.8. By (4.1), N
H X, r,0) = b, 4(X) o X, 0) + F (1, X, 1),

because, due to the composition b(t, -, (X)) o X, we do not need to replace { by projy Fix)$ in the expression for
H.

Let us from now use the notation b(t, X, ) to denote b(¢, -, u) o X.
Assume the following:
Either b is bounded, or (¢,y) +— b(t,y, 1) - y is bounded and |b(¢, y, u)| < Aly| + B b2)
for some A, B > 0 and all (¢, y, 1) € [0, T] X M X P,(M).
There exists a modulus o, such that
Ib(t1, X1, §(X1)) = b(t2, X2, B(X2)|| < op(t1 = 1] + [I1X1 = X2l]) (b3)
for all (¢;, X;) € [0, T] x H.
On ¥ we assume the following: there exists a local modulus o ¢ such that
|7"(f1,/11,r1) = F(to, 2, 1)l < oty — 12| + |11 — 12l + Wa(uy, 2), R) (F1)

for any (¢;, rj, ;) € [0, T] x R x P»(M) such that |r;|, Wa(u;, 69) < R fori=1,2.
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There exists 8 > 0 such that for any (¢, u) € [0, T] X Pr(M)

r— F(t,u,r) + Bris nondecreasing. (F2)

There exists a modulus ms such that
|F (1, 1) = F (8 prn 1) < mp(Way, 1)) (F3)

for any (¢, r, ;) € [0, T] X R X P,(M) fori = 1,2.

Lemma 4.9. Let H be as above, where b satisfies (b1)—(b3) and F satisfies (F 1), (F2). Let X1,X»,(1,¢, € H
andt;,t, € [0,T].

() IFIIXill, NGl < R, then
[Kb(t1, X1 1), &1) = (blt2, Xo, p12), )] < (AR + Bt — &l + Row(ty — 12l + [1X1 = Xl
(ii) If K > O then for any t € [0,T], r € R and X € H such that ||X|| > K we have
Ht,X,r,0) - Ht, X, r,{ + 29(X)) < Amin{K"|c|lo, l|b]leo}

where c(t,y,p) = b(t,y, 1) - y.
(iii) We have

fﬂ [b@, X1(x), 1) = b(t, X2(x), 2)] - 40Xy = X2)(x) dx < Aoy (|IX1 = Xa]).

Proof. (i) We have

[<b(t1, X1 1), 1)

(b(t2, X2, 12), &)
'L[b(fl,X1(x),/J1)'§1(x)—b(fz,Xz(x),/lz)'&(x)]dx

oy, -, ol 161 = LIl + 112y, Xi, ) — b2, Xa, o)l
(AR + B)lISi = &oll + Rop (I — 2] + 11Xy = XalD,

IN A

where we used (b1), (b2).
(ii) We have, if ||X]| > K,

X,

X0 = X+ 2000) = 2 [ bt X, 2000 T8
Q

so we get the bound A||b||., if b is bounded, or AK~!||c]|.. is finite.

(ii1) By means of (b2), we readily estimate

A

fg [b(t, X1 (x), 1) = b(t, Xo(x), 2)] - WXy = Xp)(x)dx < Allb(t, Xy, p1) — b(t, Xo, o)l
Aop([1X1 = XalD),

IN

which finishes the proof. O

In what follows, UC([0, T] x P>(IM)) denotes the vector space of all functions which are uniformly con-
tinuous in u uniformly with respect to ¢ and uniformly continuous on bounded sets; UC([0, T'] x H) is defined
similarly.

Proposition 4.10. Let H as in Example 4.2, where b satisfies (b1)—(b3) and F satisfies (F 1), (F2). Let Uy :
Pr(M) — R be uniformly continuous. Then there exists a unique U € UC([0, T] X P,(M)) which is a viscosity
solution for (4.3) with U(0, -) = Ul.
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Proof. Let us begin by checking that A satisfies (4.9)—(4.12). By (¥ 1), we have

|F (11, X1.71) = F (12, X2, 1) |F (11, 4X1), r1) = F (12, $(X2), 1)
ot = to| + |y = ra| + Wa(H(X1), §(X2)), R)

oty = 2| + |11 = 2| + [1X1 = X5, R),

IA

IA

whenever |r;], ||X;]] £ R (the latter being equivalent to W(u;, 69) < R) where y; := #(X;). This, together with
Lemma 4.9 shows that H satisfies (4.9).

Condition (4.10) follows trivially from (¥ 2). Then note that (4.11) follows from Lemma 4.9 (ii). We use
(iii) of the same Lemma and (¥ 3) to see that (4.12) holds with my := o + my.

The assumptions on U yield the uniform continuity of U,. According to Existence Theorem 1.1 [12], for
any uniformly continuous U, there exists a unique U e UC[0, T] x H) which is a viscosity solution for (4.4)
with U(0,-) = Uy. From the properties of H, we also infer U(z,-) is R.L for all ¢ € [0, T] (as in the proof
of Proposition 4.5). Then a version of Corollary 4.6 applies, first to give existence of a continuous viscosity
solution U (given by U(t, #(X)) := U(t, X)) for (4.3) with U(0, ) = Uy. From U € UC([0, T] x H) we also get
U € UC,([0,T] x Pr(M)). As for uniqueness, if U € UC([0, T] X P>(M)) is a viscosity solution in this class
for (4.3) with U(0, -) = Uy, then it is easy to see that U@, X) := Ut §(X)) belongs to UC,([0, T] x H) and, by
Theorem 4.4 (2), is viscosity solution for (4.4) with U(0, -) = Uj. O

Remark 4.11. We have thus proved that if b and ¥ satisfy (b1)—(b3) and (F1), (F2), then for any Uy €
UC(P2(M) there exists a unique U € UC([0,T] X Po(M)) which is a viscosity solution for the semilinear
transport equation

AU, ) + (blt, -, 1),V Ut )y + F (8, 1, U1, ) = 0 for (2,) € [0, T] X Po(RY) (4.13)

and such that U(0, ) = Uy in Pr(M).

5. Time dependent HJE and convex hamiltonians

In Section 8, we provide examples of Hamiltonians satisfying the assumptions we impose in this section.

5.1. Assumptions

Suppose
H e C([0,T] x H x H) 5.1
is such that
H(t, X, ) is convex for any (£, X) € [0, T] x H (5.2)
and
H(0,-,0) isbounded. (5.3)

We denote by L(z, X, -) the Legendre transform of H(t, X, ), and for b € VXC};([O, T] x M) (i.e. the set of spatial
gradients of functions in C'([0, T'] x M) with bounded spatial gradients) we define

Hy(t,X,0) :=(b(t,") 0 X, ) — L(t, X, b(t,) o X) = (b(t,") 0 X, {) + F(t,X)

for (#,X,0) € [0, T] x H x H.

We strengthen assumption (4.9) by imposing that there exist a monotone nondecreasing function e on [0, o)
and a local modulus of continuity o such that

|H(t1, X1, 1) — H(12, X, O)| < oIty — o] + 181 = &L R) + e(R)IIXy — Xol| 5.4
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for all (¢;, X;, ;) € [0, T] x H X R x H such that ||;|| < R fori =1, 2.

We assume that there are monotone nondecreasing functions 6;, 6, : [0, c0) — R such that

tim ) _ g 9 _ (5.5)
U—00 u U—00 u
Ht,X,0) > 0,(IlZ1) and  L(z, X, B) > 6,(I|Bll) (5.6)

forany X,{,Be Handt € [0,T].

We assume that H satisfies the invariance property (4.2) and
A, X,0) > H1,X.0), (5.7)

where we have set
H(1, X, {) = H(t, X, projypx{)-

Fort e (0,T] and X, Y € H we define
!
C(Y,X) := igf{f L(r,Z.3ydr © Tp=Y, %=X, Te W' (0,nH)}.
0

Similarly, we define C? by replacing L by L, in the above definition, where Ly, is the Legendre transform of Hj,.

Additional assumption 5.1. We say that H satisfies (A) if there is a set D dense in H, such that for any X, Y € D
and t € (0, T] there exist sequences

(b, € WHS((0,6) x M; M) N V.Co((0,0) x M), (=), € W((0,1); H)

such that
G =S =BoT  on O,

Lim W (#(Y), #(Zp)) = lim Wa(H(X), B(EZ)) = O (5:8)

and .
C,(Y,X) > lim inff L(s, Z’S’,Z’;)ds.
n—oo O

5.2. Properties of H and L
Given (#, X1, By) € [0, T] x H x H, since 6y, is superlinear, we use (5.6) to obtain {; € H such that
H(t,X1,0) + L(t1, Xy, By) = ({1, By). (5.9)

Lemma 5.2. Suppose H satisfies (4.10 — 4.12), (5.4) and (5.6) hold. There are monotone nondecreasing
functions e,é : [0,00) — [0, 00) such that the following hold for any (t;, X;, B;) € [0,T] x H x H such tha
IB1ll, [|1B2ll < R.

(i) If &1 € His as in (5.9) then ||{1]|| < é(R). After replacing é(R) by max{R, e(R)} we may assume that
e(R) > R.
(ii) We have

\L(t1, X1, B1) — L(t2, X2, Bo)| < o(It; — 2], 8(R)) + 2(R)(I1X1 — Xall + ||B) — Ball).
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Proof. Let us assume without loss of generality that H(0,0,0) = 0.
(1) By the maximality property of {; and (5.4),
(&1, B1) — H(t1, X1, &) = —H(11,X1,0) > —0(t1,0) — e(0)R.

By (5.6)
1]l + e(@IR + o(T, 0) = O,(1I411))-

Since 6y, is superlinear (see (5.5)), we conclude the proof of (i).

(i1) Suppose, without loss of generality, that

L(t1, X1, B1) > L(12, X2, By).

‘We have
L(t1,X1,B1) — L(12,X2,By) < ({1,B1 — Bo) + H(t, X2, {1) — H(11, X1, &)
< eR)|IBy — Byl + o(|t2 — t1],&(R)) + e(e(R))|1X1 — Xal.
We conclude the proof of (ii) by interchanging the roles of (¢, X1, By) and (2, X», B>) . ]

Remark 5.3. Assume H satisfies (4.2), (4.10 —4.12) and (5.3 — 5.7). If Bz C H is the ball of radius R then H is
bounded on [0,T] x H X Bg.

Proof. Suppose (t,X, B) € [0, T] x H X Bg. Then
|L(t,X, B)| < |L(t,X, B) — L(t, X, 0)| + |L(t, X, 0) — L(0, X, 0)| + |L(0, X, 0)|.
We apply Lemma 5.2 (ii) to obtain
IL(t, X, B)| < &R)R + o (T, &(0)) + |L(0, X, 0)|.
Since — supy |H(0, X, 0)] < L(0, X,0) < —6,(0), we conclude the proof. O
Lemma 5.4. Ift€[0,T], X,Be Hand S € S(Q), then

L(t,Xo0S,BoS)=LtX,B).
Proof. We have

L(t.X0S.BoS)=sup{Z.BoS) - H(t,X0S.,0)} 2 sup{({ 0§, BoS)—H(t.X05.{ )]
ZeH e

and so (4.2) and ({ o S,B o S) = ({, B) imply
L{t,Xo0S,BoS) > L(t,X,B). (5.10)

We apply Proposition 2.8 with Xy = id and X = S to obtain a sequence of maps S, € G(Q) such that §,
converges to S. We apply (5.10) to obtain

L(t,X,B) = L(t,X0S,08,",BoS, 08> L(t,X0S,,BoS,).

Since {X 0 S ,}, converges to X o S and {Bo S}, converges to Bo S, by Lemma 5.2 (ii) (which implies that L is
continuous) we conclude that L(z, X, B) > L(t,X oS, BoS). This, together with (5.10), completes the proof. [
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By Corollary 2.10, the following functions are well-defined:
H(t,u, &) := Ht,X,& 0 X) for all (t,u) € [0, T] x Po(M) and all £ € T Pr(MD),
where X € H is such that ¢ = §(X). Similarly, if b € 7,9>(M) then
L(t,u,b) := L(t, X, b 0 X).

Remark 5.5. Let 1 € [0,T], u € P,(M), £ € Hand X € H be such that u = §(X).
(i) The Legendre transform of L(t,u,-) is H(t, u, -).
(ii) If & € T, Pr(M) and projypxd = € o X then H(t, u, &) = H(t, X, projypx4)-

Proof. One obtains (ii) by using the definition of H. Therefore, only (i) needs to be proved. Observe that if
& € T,P>(M) then
b, &y —H(t,p, &) =(bo X, E0X) — H(t,X,£ 0 X) < L(t,X,b 0 X) = L(t,, b).
Maximizing over & € 7,%>(M) we obtain (this is how we define the left-hand-side below)
(H(t, 1)) (b) < L(t, i, D).
If £ € H then, by (5.7),
(&, boX)—H(t,X,0) < (projypxd, b o X) — H(t, X, projypix;{)-
Writing projypx{ = € o X for £ € 7,$>(M) we conclude that
({boX)—H(t,X,{) <(é0X,boX)—H(t,X,E0X) = (£ D), — H(t,u, &) < (H(t, 1, ) ().
Maximizing over { € H we conclude that
L(t,u,b) = L(t, X,b o X) < (H(t,u, )" (b).
O
I:emma 5.6. Suppose H satisfies (A), (4.10 —4.12), (5.4) and (5.6) hold. If b € W' (M; M) N Cp(M; M), then
H,, satisfies (4.9 — 4.12) for appropriate moduli of continuity.

Proof. Apply Lemma 4.9 when ¥ = 0, to obtain that for appropriate moduli of continuity,

(. X,0) = (b(1,-) 0 X, )

satisfies (4.9 — 4.12). It remains to check that F satisfies (4.9 — 4.12) for appropriate local modulus of continuity.
By Lemma 5.2 (ii), F satisfies (4.9). Since F is independent of r € R and ¢ € H, it satisfies (4.10 — 4.11). By
Lemma 5.2 (i1), if € [0, T] and X € HI, then

F(t2’ Y) - F(tI’X) Z‘(t15X7 b(tlv ') o X) - Z‘(t27 Y’b(tz’ .) o Y)
o(It2 = 111, &(l1bllse)) + EUbll))(IIX = Yl + lIb(t1, X) = b(tz, V)

o (It — 11, &([1blleo)) + &(1Iblleo))(Lip(B) + DX = Yl + |11 — 12]).

IAN

IA

This concludes the proof. O

Fort € [0,T], u € P»(M) and & € L*(u), set
Hb(t7 M, 6) = Hh(t, X7 f ° X),
where X € H is such that u = #(X). Using the definition of A given in (4.1) and applying Remark 4.8, we get

Hy(t,X,0) = Hy(t, X, ) for all (1, X, ) € [0, T] x H x H.
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5.3. Comparison principle

We define
0GX) = inf{C(.X) + To(M).  Tp(t.X) = inf|C7 (X X) + Do(Y))
fort e (0,7T] and X € H.

Theorem 5.7 (Comparison principle). Assume H satisfies (4.2), (4.10 — 4.12) and (5.3 — 5.7). Suppose Uy €
UC(P>(M)) and H(O, -, 0) are bounded and let U* € C([0, T] X Po(M)).

(i) IfU*(t,-) € UC(P2(M)) uniformly in t € [0,T] and U* is a viscosity supersolution for (4.3) with initial
condition Uy, then U < U+.
(ii) U(t,-) is R.I and so, U(t, ) := U(t, X) is well-defined for u € P,(M), where X € H and u = §(X)
(iii) If U=(t,+) € UC(P2(M)) uniformly in t € [0,T] and U~ is a viscosity subsolution for (4.3) with initial
condition Uy, then U > U-.
(iv) There is at most one U € C([0, T] X P>(M)) viscosity solution for (4.3) with initial condition Uy such that
U(t,-) € UC(P,(M)) uniformly in t € [0, T]

Proof. (i) Since H satisfies (4.10 —4.12) and (5.4), by the theory of viscosity solution in Banach spaces (cf. e.g.
[11] [12] [13]), U is the unique viscosity solution for

U, X)+Ht, X, Ut,X),VU(,X)) =0 for (t,X) € [0,T) x H,

with initial data Uy. Furthermore, U € BUC([0, T] x H). Since U™ is a viscosity supersolution for (4.3) with
initial condition Uy, applying Theorem 4.4, we obtain that U* is a viscosity supersolution for (4.4) with initial
data Uy. By the fact that A < H, we conclude that U+ is a viscosity supersolution for

8,U t,X) + Ht, X, U*(t,X), VU*(t, X)) = 0 for (1, X) € [0, T) x H

with initial data Uy. We can compare it then to the viscosity solution U (which is thus a subsolution); we invoke
the comparison principle [11] [12] (using A as our Hamiltonian), to conclude the proof of (i).

(i) Since H satisfies the invariance property (4.2), we may use the uniqueness property of viscosity solution
on Banach spaces (cf. e.g. [11] [12] [13]) to conclude that U(¢, X o S) = U(t, X) for any (¢, X) € [0, T] x H and
any S € S(Q). Since U is continuous, we use Corollary 2.10 to infer that U(z, ) is R.L

(iii) Under the additional assumptions imposed in (iii), fix 7 € (0, 7] and X, Y € H. We are to prove that
CiY,X) + Uy(Y) > U~ (7, X). (5.11)

Let {(b",Z")}, be the sequence from the assumption 5.1. Given € > 0 arbitrary, we choose n such that
- - f - .
Ci(X,Y) > —€ +f L(s, X5, X0)ds. (5.12)
0

Observe that the Legendre transform of I-_I;,n (t,X,-)1s Zb,, (t, X, ) given by

L(t, X, b,(t,)0X) if B=b,(t,)oX ae.

Ly, (t,X,B) =
h'l( ) { (o] lf B * bn(t$ ) o X a.ce.

The (unique) viscosity solution ¥ of
OV, X) + Hy (1, X, VV(t,X)) =0 for (t,X)e[0,T)xH (5.13)
with initial data U, is therefore

V(t, X) := igf{Uo(E(O))+ f L(5,%(5),3(s))ds : % = by(-, %), E(I)zX}. (5.14)
0
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Remark 5.5 gives that the Legendre transform on L(t, u, -) is H(t, i, -) and so, Hj,, < H. We conclude that U-is
a viscosity subsolution for

O,U~(t,u) + Hy, (1,1, VU~ (1, 1)) =0 for (1, ) € [0, T) x P(M),

with initial data U,. Thanks to Theorem 4.4, U is a viscosity subsolution for (5.13) with initial data Uj.
Viscosity solutions being also a viscosity supersolutions, we use the comparison principle [11] for (5.13) to
conclude that U~ < V. In particular,

13
U730 < V(7T < Oo(=h) + f L(s, X", 5")ds < Up(Z2) + CAY, X) + €,
0

where we have used (5.12). Since (5.8) holds and U~ and U are continuous, we conclude that
U™ (T, 4(X) < Ug(H(Y0)) + CH(Y. X) + €.

By the fact that € > 0 is arbitrary, we conclude the proof of (iii).

(iv) is an obvious consequence of (i) and (iii). O]

5.4. Lipschitz property of subsolutions to the Eikonal equation

The eikonal equations studied here will later be used to show that subsolutions for Hamilton—Jacobi equa-
tions are Lipschitz when the Hamiltonian is coercive. Consider the equation

IV V(wll, = Ain Po(M). (5.15)

Proposition 5.8. For any real constant 1 > 0, any viscosity subsolution U € BUC(P,(M)) of (5.15) is A—
Lipschitz.

Proof. Note that any viscosity subsolution U for (5.15) is also a viscosity subsolution for
1 2 1o
oWt p) + EIIVWW(I,#))II - E/l =0, W(@O,)=U. (5.16)

By [19], a viscosity solution for (5.16) is given by the Hopf-Lax type formula,

. L, A2
Vi = nf {U(v) + WA, v)} + S,

In fact, if m is a modulus a continuity for U and |U| < M, the proof of Proposition 4.7 [16] shows that

m(6) = 2m(\J2M + 1)6) + 2(1 + A2)6

is a modulus of continuity for V(¢, -). Thanks to the comparison principle in Theorem 5.7 applied to (5.16), since
V is a viscosity supersolution, we infer

1 2
S W) + 2 UG - U) forall > 0, g, v € Po(M).

The desired Lipschitz continuity follows by minimizing the left hand side with respect to ¢. O
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6. A stationary HJE

Consider the following problem

U + Hp, U(w), Vi, U(w) = 0 in P (M) (6.1)

and let us attempt to identify sufficient conditions on H which yield uniqueness of viscosity solutions in
BC(P,(M)) (the set of all bounded, continuous functions on P,(M)). First, let us assume there exists A :
H x R x H — R continuous such that

HX,r,&0X) = HAX), 1, &) forall X e H, r € R, € € LXH(X)).

Let us further assume that

HX,r,0)> HX,r, Projy gy ) for all (r, X, ) € R x H x H, (6.2)
||(ll}m H(X,r,) = oo uniformly with respect to (r,X) € R x H, (6.3)
- HX,r, {) is H-weakly L.s.c. for each (r, X) € R x H, (6.4)

¢ v H(X,r,?)is quasiconvex for any (r, X) € R x H, (6.5)

i.e. the sublevel sets {{ : HX,r, {) < a} are convex for all @ € R and all (r, X) € R x H.

Furthermore, (4.10) is replaced by:

r— H(X,r,¢) is nondecreasing for all (X, /) € H x H. (6.6)
For example, if H(u, r, &) = %Ilfll2 + F (u), we see that H is uniquely determined as

N 1 1 ~
HX,r,{) = 5||§||2 + F(Xgy) = Engnz +F(X).

If F is continuous and bounded, then H satisfies the conditions for existence and uniqueness (4.9)-(4.12) (also,
see [11] and [12]), plus (6.2)-(6.5).

Our strategy is the following:

(1) First note that any viscosity subsolution U of (6.1) is also a viscosity subsolution for (5.15), where 4 € R is
determined by H(X, r,{) < ||U||; indeed, if & € 3°*U(u), then U(u) + H(u, U(u), &) < 0, which by (6.3) implies
the existence of A € R (depending only on ||U|l|..) such that ||£]], < A.

(2) For any real constant 4 > 0, we know by Proposition 5.8 that any viscosity subsolution for (5.15) lying in
BC(P»(M)) is also Lipschitz continuous on $,(M). (Note that this is known to be true in the finite-dimensional
and also the L? settings [13]).

(3) From (1) and (2) it follows that any viscosity subsolution U (in BC(,(M)); we always discuss such solutions
only) of (6.1) is Lipschitz continuous on P,(M). Thus, U is Lipschitz continuous in H. So, in particular, if a
viscosity subsolution lies in BC(P,(M)), then it, in fact, lies in BUC(,(M)) (bounded, uniformly continuous
real valued functions on $,(M)).

(4) Finally, we show that if U € BC(P»(M)) is a viscosity solution for (6.1), then U is a viscosity solution for
UX)+HX,UX),VU(X)) =0in H. 6.7)

Since [11] guarantees a unique viscosity solution for (6.7) in BUC(H), we obtain uniqueness for (6.1) in light of

the equivalence between U € BUC(P,(M)) and U € BUC(H). The local Lipschitz continuity of the viscosity

solution U will benefit our analysis as follows: it is known [20] that a locally Lipschitz continuous map V on
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H is differentiable at any X in a dense subset of H. Furthermore, the superdifferential set at any point X satisfies

(see, e.g., [6] page 49)
H—-weak
8" V(X) c conv{weak — klim VV(Xy) : X — X} , (6.8)

i.e. for any ¢ € 9" V(X) there exists a sequence {£,}, € H which converges weakly to ¢ and such that

My

&= ilﬁ,ﬁﬁ,, where A, > 0, Zﬁﬁ; =1
i=1 i=1

and there exist sequences {X,:”i}k converging strongly to X such that V is differentiable at each X,'Z’i and
VVX)') — 9 weakly as k — .
We use (6.4) to conclude

lim inf HXP, VX, VVEX) > HX, V(X),9) for each i = 1...m,,

and so (6.5) implies

liminf max HX, VX, VVX)) > max HX,V(X),9) > HX, V(X), %)

—oo  i=1...

It follows ' ' '
lim inf lilgn inf max I:I(X,f”, VX, VVX) = HX,V(X),?). (6.9)
But, if V := U (where U is a viscosity solution for (6.1)), we know that at all points of differentiability XZ’i we
have that U is also differentiable at ,uZ’i = ﬁ(XZ’i) and so
Uy + HXPL O, VOXE) = U + Hul', U, v, Ul)) = 0.
In light of the strong convergence of XZ’i to X as k — oo, the above equality and (6.9) imply
UX)+HX,UX),) <0.

Thus, U is a viscosity subsolution for (6.7). Just as in the previous section, it is easy to show that U is a
viscosity supersolution: indeed, if € 8~ U(X), we know Projypxd =: €0 X €9~ U(X), which is equivalent to
& € 0, U(#(X)). Thus, by virtue of (6.2), we have (for u := §(X))

UX) + HX, U(X),¢) 2 UX) + HX, UX), projypix) = U + H, U, €) 2 0.

We conclude that U is, indeed, a viscosity solution for (6.7).
We have thus proved:

Theorem 6.1. If H satisfies (4.9), (4.11), (4.12), and (6.2)—(6.6), then (6.1) admits a unique viscosity solution
in BC(P,(M)).

Remark 6.2. Thus, we have a comparison principle for locally Lipschitz viscosity solutions U € BUC(P,(M))
for (6.1). Furthermore, note that the same argument will work if H satisfies the conditions for existence and
uniqueness (4.9)-(4.12) (also, see [11] and [12]), plus

HX,r,) <HX,r, Projypx) for all (r, X, {) € R X H x H, (6.10)
II}I}m H(X, r,) = —oo uniformly with respect to (r,X) € R x H, (6.11)
¢ HX, 1, 0) is L2(Q; RY)-weakly u.s.c. for each (r,X) € R x H, (6.12)
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.- H(X,r, ) is quasiconcave for any (r, X) € R x H. (6.13)
Indeed, note that H satisfies (4.9)-(4.12) and (6.11)-(6.13) if and only if—I:I satisfies (4.9)-(4.12) and (6.3)-(6.5).

Such a Hamiltonian is provided by
_ 1 ~
A0 = =3 IIP + X,

which corresponds to H(u, &) = —|I§|IZ/2 + F ().

7. Appendix I: A particular stationary problem revisited

We will now specialize to a particular equation of type (7.1), namely take A € R and consider

1
U + EIIVWU(ﬂ)IIZ = A (1.1)

We will show uniqueness of viscosity solutions without the need to a priori prove that the solution is Lipschitz
continuous (so that we will not need the deep result (6.8) by [20]).

Theorem 7.1. For any A € R the problem (7.1) has the comparison principle in C(P,(M)).

Proof. Note that any viscosity subsolution U of (7.1) is a viscosity subsolution for

1
V) + (Vi V), by, - zllbllﬁ =4 (1.2)

for any b € C!(R?; R?). The Hamiltonian for (7.2) is

1
H(p, &) = (&, by = S1Ibll; = 4

so the corresponding Lagrangian is L(u, &) = A1+ ||b||;21/2 if ¢ = bpu-a.e. and L(u, &) = +oo else. Since H is, again,
a Hamiltonian as in Subsection 4.2 (time-independent), and b is sufficiently regular for conditions (b1)-(b2),
(F 1), (572) to be satisfied, we have that (7.2) is equivalent to

V(X) + (VV(X),b o X) — %Hb oXIFP=A XeH. (7.3)

So, U is a viscosity subsolution for (7.3). But

00

UB|(X) = inf % fo e L(o(s),a(s))ds = A + % fo e16(s) o X| ds,

is the unique viscosity solution for (7.3), where 0,5-(s;y) = b(5(s;y)), (0;y) = y, s € [0,00), y € R’. By the
comparison principle for (7.3), we get
UDbI(X) > U(X) for all X € H and any b € C'(R?;RY).

In particular, for b = 0 we get

A> U(X) forall X € H.
But we know that any continuous viscosity supersolution V of (7.1) yields a continuous viscosity supersolution
V for |

U(X) + E||VU(X)||2 = A

The comparison principle for this problem applied to the continuous viscosity supersolution ¥ and the (obvious)
continuous viscosity solution (and, thus, subsolution) W = A yields

V(X) > Aforall X € H.

So, V(u) = A = U(w) for all u € P,(M), for all continuous viscosity subsolutions U and all continuous viscosity
supersolutions V. O
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8. Appendix II: Examples

Throughout this section, ¥ € C,(P>(M)) (continuous and bounded) and satisfies (¥ 1), (¥2) and (¥ 3). Let

¥ : H — R be defined by .
F(X) := FHX)).

Let
f e Whe((0, T) x M; M) N Cp([0, T] x M; M), F e C'(H) N Cp(H) N Lip(H).

Let
Ie C*([0,T] x M)

and set
I(t, x,v) = l(x,v) + (f(t, %), V).

We suppose that
I(x, ) is a convex function for all x € M

and there are constants kg, k2, k4 > 0, k1, k3 such that
Kl(5,%,9) + k3 > I(s, x,v) > ko> — K1 8.1)

for any s, § € [0, T] and any x, v, X, v € M such that |[v| < |].

Suppose here exist a local modulus of continuity o~ and a monotone nondecreasing function & : [0, ) —
[0, o) such that
I(5,%,9) = I(s, x,v) < &R)(|s — 5] + X — x[) + o°(|? — VI, &(R)) (8.2)
if s,5€[0,T], x,x,v,v € M and |v|, |9| < R. For instance, if p > 2,a € C*2(Q) is positive, and f = 0, then
_ P
I(x,v) := a(x)&
p
satisfies (8.1 — 8.2) with
-1

RP P
k3 =0, &R) = Lip(a)—, cr(u,r)=2||a||w(.”—7) u
p Lip(a)

maxa

Ky = s 5
mina

Any positive linear combination of functions satisfying (8.1 — 8.2) also satisfies (8.1 — 8.2).

Let & be the Legendre transform of /. We define
A1, X,0) = f h(t, X(w).§()dw + F(X), Lt X, B) = f I(t, X(w), Bw))dw — F(X)
Q Q

fort € R and X, Z, B € H. We obtain that L(¢, X, -) is the Legendre transform of H(t, X, -).

Similarly, we obtain that L(t, u, -) is the Legendre transform of H(z, i, -) if we define
HOp8) = [ v ou@) + 7. Lenb)i= [ fexbuo -7
M M

fort € R, u € Po(M) and &, b € L*(u).
For X,Y e Hand T > 0, we define

T
ClXx,v):= igf{ f L3, 3)dt + So=X,3r=Y; T¢ ACZ(O,T;H)}.
0
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For u, v € P,(M) we define
T
Cl ) = int{ f Lo vdt oo =pi o7 = v, o € AC0, T3 Pa0D)),
o,V 0

where the infimum is performed over the set of (o, v) such that v : (0,7) x Ml — M is a Borel field such that
0,0+ V- (ov)=0in D'((0,T) X M). (8.3)
Lemma 8.1. Suppose (£"), ¢ W"2(0,T;H) converges to X in L*(0, T;H) and (X"), converges weakly to ¥ in
L*(0, T; H).
(i) If I = 0 (meaning we drop I from the definition of L) then
T

T
lim | L(t,X,SMdt = f L, %, 3)dt. (8.4)
0

—00
n 0

(ii) If we further assume that (X"), converges pointwise to ¥ and there exists a nonnegative function g €
L'(0, T; H) such that

f Iz, Ehdtdw < f g(t, wydtdw, (8.5)
0,7)xQ 0,T)xQ

then (8.4) continues to hold for any [ which satisfies (8.1 — 8.2).
Proof. (i) Since ¥ is Lipschitz, applying Jensen’s inequality, we have
7 (Z) = F(Z)l < Lip(F)IEE, ) = ().

Hence,
T

T 1
lim | |FE" - F(E)ldt < Lip(F) lim( f 1=, ) — X(t, ~)||2dt)2 =0. (8.6)
n—o Jq n—oo 0

We have

<f(t’ Zn(ts ')7 Zn(ts )> - <f(ta Z(ts ')a Z(L )> = <f(t7 Zn(t’ ')9 Zn(ts )> - <f(ts Z(ts ')a Zn(t’ )>
+ (f20, ), )y = (f (2, 22, ).

Since (¥"), is weakly pre—compact, its norm is bounded by a finite number, say, M. We have
T . .
| [ ((ez.276.) - Gz, 30 p)
0
T 1
< MLip(f) f I="(2,) = £, )lPdr)’
0

+ | f 4,21 w) - (51, w) — 31, a)))dtda)'.

0,7)xQ

By the fact that f(, 2(t, w)) € L2((0, T) x Q, M), the last expression tends to 0 as n tends to co. We use (8.6) to
conclude the proof of (i).

(i) Further assume that (X"), converges pointwise to X and (8.5). We apply the monotone convergence
theorem to obtain that

lim Iz, Ehdtdw = f I, 2)dtdw.
=00 J0,T)xQ (0,T)xQ
This, together with (i), yields the proof of (ii). O]
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Observe that if £ € W1(0, T; H) is such that

T
f dsfl_,(s, T, 2)dw < Cp < o0, (8.7
0 Q

then, by (8.1), £ € W"2(0, T; H).

Lemma 8.2 (Approximation by time—Lipschitz/Space-bounded functions). Letr X, Y € H be such that |X|,|Y| <
C for a constant C > 0. Let X € Wl’z(O, T;H) be such that Xy = Y, r = X and (8.7) holds. For any € > 0 and
0 > 0, there exists

e Wh(0,T;H) N L*((0, T) x Q; M)

such that ¥y = Y, |17 — X|| < 6 and
T —_ —_ = T _ .
f L(s, X, 2Z5)ds < e+f L(s, X, 2)ds.
0 0

Proof. For r > 0 we define

—r if t<—-r
¢'(t) = t if r<t<sr, VseR, D'(x) = (¢"(x1), -+, (xg)) VY seM.

r if t>r

Set .
T (w) = To(w) + f O (Z(w))ds .
0

‘We have
% =Y, El<ZBollo +Tr, XX, X<k (8.8)

For each w € Q we define .,

E'(w) := U{s €[0.7] : [Ei(w)l > r}

i=1

and
d

E" = U{(s, w) €0, TIxQ : Iii(a))l > r}.
i=1

Since |2| is square integrable, we have

lim(£' ® LY)(E") = lim f 12 (w)|Pdtdw = 0. (8.9)
r—00 r—oo Jpr
By the fact that
Fo-s@is [ g
[0,/]NE"(w)
we obtain the time pointwise estimate
I - 2P < (L' @ LYE) | IE(w)Pdide. (8.10)
o
Thanks to (8.9) we conclude that
lim |Z/ - %] =0 Vte[0,T] (8.11)
Furthermore,
T
f 1=} - ZPde < T(L' ® LI)E) f IZ(w)lPdtdw. (8.12)
0 Er
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Similarly,
T
f 12 — 2, |Pdt < f [=s(w)dsdw. (8.13)
0 E
Thus, {£'}, converges to X in W'2(0, T; H). Thanks to (8.1) and the second inequality in (8.8), we infer
Z_(Etr, 2;) < Kzl_(zt, E,) + K3.
We apply Lemma 8.1 to conclude the proof. O

Lemma 8.3 (Approximation by time-C'/space-C* bounded functions). Let X,Y € H and let X € W'2(0, T; H)
be such that Z, ¥ € L=((0,T) x Q; M), £y = Y, X7 = X and (8.7) holds. Suppose X,Y € L*(Q;M). Then for
any € > 0 and 6 > 0, there exist
$ e W0, T;H) N L((0, T) x Q; M) and £* € C*([0, T1; H) N L¥((0, T) x Q; M)

such that

(i) £0= Y, 51 = X, [2] < [Zlleo, and [2] < |Elle,

T —_ - 2 T —_ .
f L(s, 2, 2Z5)ds < € + f L(s, X, X5)ds.
0 0
(ii) 1120 = YII, 127 = X1 < 6, 1Z] < [IZlloos |i| < 2l and

T T
f L(s, 25,35 ds < e + f L(s, %, 2,)ds. (8.14)
0 0

Proof. (i) Assume |Z| < R; and [¥| < R,. Choose n > 1 integer and set

s—1

0:=—, t:=0di, Ef = (1—

— 1 .
JE,+ 0, Wselintn] Yi=0,-.n.
n 0

Clearly, |Z°] < Ry. If s € [t;,1;,1] then
lisl 2 lisl T
1%, — I = H f ZTdTH <6 f f 5. Pdrdw < 6 f DA
t; QJ 0

T
=5 - %,/ < 5[ I111Pdr . (8.15)
0

Thus,

If s € [#;,t;+1] then
tiv S
S |Zli+l B Zti' jf‘, l Idt OR,

E.: = <—=R.
|s| S S =75 2

This, together with (8.15), implies that {Z°}s converges to X in L?(0, T; H) and {X°}s is weakly pre—compact in
W12(0, T; H). Hence, {>°}5; weakly converges to X in L?(0, T; H). By Lemma 8.2 (i)

T T
lim f (¢F1.20),2%) - F(=°))dt = f (¢f.2),2) - F(©))dr. (8.16)
5—0 0 0

Since 1_(2,*1,, -) is convex, by Jensen’s inequality

il Ti+1
f I, 25)ds > 612, %0) = f I(Z,,20)ds. (8.17)
1, 1,

i i
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Note that

Tivl tivl
f I, 3,)ds — f I(28,3%)ds
1, 1,

i i

ft,'u (Z_(ZS, Zs) _ l‘(zti, Z'js))ds
L
. ff,ﬂ (Z_(Zti’ ES) _ l_(ztis Zg))ds
L
. fml (l_(zt,-9 E?) — Z_(Zi, Zi))ds
1
Thanks to (8.17) we conclude that

tit1 ti+1 Ti+1
f (2, 35)ds — f (8,3%ds > f (125, ) - 12, 29))ds
1, 1, 1,

i i

Vv

i

tit1
+ f (12, 23) - 123, 59))ds. (8.18)
1

i

We use (8.2) and the fact that [¥| < R; to conclude that

82 s

tis1
(2, 29) = 123, 39)| < (R)IE,, — Z0| < eR)IZ,, — By, | < E(R2) f £ ldt
t;

for any s € [1;, t;41]. Thus,
vl i1
f (X, 2%) — (X2, 20)|ds < 6&(Ry) f = |dr. (8.19)
t; t;
Similarly,
tir1 lit1
f (Zy,2) — [, Z)lds < e(Ry)IZ, — X, |dt < 6&(Ry) f 3. |dT. (8.20)
t; t;

‘We combine (8.18 — 8.20) to obtain

T T
f ds f (I_(ZS,ZX)+265(R2)|2Y|)dwz f ds f 12,30 dw, (8.21)
0 Q 0 Q

which, together with (8.16), concludes the proof of (i).

(ii) By a first approximation, we may assume without loss of generality that X satisfies the same properties
as £ found in (i). First, extend Z(-, w) by setting

Yo(w) if <0

Z(w) =2 0) 1= {ZT(w) it 1> T

Let o € C°(R) be a non negative probability density supported in [—1, 1]. Set

o°(0) == € 'o(e '), T(w) =0 * 2(hw), Y(w) eRxQ.

We have
C*([0,T]; H) N L™((0, T) x Q; M),
and
EI <2 lloos < Moo, [ ) — Z(2, 0)] < €2l f Islo(s)ds . (8.22)
R
Furthermore,
111})1+ IZ€ =3 = 0. (8.23)

By (8.22), (8.23) and Lemma 8.1 we can choose € small enough and set £* := Z€ to see that (8.14) holds. O]
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Lemma 8.4 (Existence of Eulerian coordinates). Let X,Y € H N L*®(Q; M) and let * € W"2(0,T;H) be such
thatZ, ¥ € L0, T) X Q;: M) and = = ¥, X7 = X and (8.7) holds. Then, for any € > 0 and 6 > 0, there exist

3¢ € C([0, T] x ;M) such that ¢ € L((0, T) x Q; M) (8.24)

and the pair (0¢, v¢) consisting of the path of Borel probability densities 0(t, -), t € [0, T] and its corresponding
velocity field v¢ such that

0 <o e Who([0,T]; C¥(M)), v¢ € C([0, T] x M; M) (8.25)

and
0,0+ V- (V) =0in D'((0,T) x M). (8.26)

We also have that for any ball B C M there exists a positive R such that

T T
f (sup [vé| + Lip(v;, B))dt, f L(t,0¢,v)dt < oo, |v|<R. (8.27)
0 B 0

Furthermore, there exists a unique solution to the initial value differential equation

S€=vEoSE, So=id (8.28)
and, if we set Zf 1= S o 25, we have
T - . T - .
f L(t, X5, X5)dt < f L(t, %, X)dt + ect MT + Tmy(ellid]|,) (8.29)
0 0
for some positive M, and
Wo(#(X), 07),  Wa(#(Y), 00) < 6. (8.30)

Proof. By a first approximation argument, thanks to Lemma 8.3, we may assume that £ equals the X* found
there and so, in particular,

e C([0,T;H) N LY((0,T) x M; M), [Z], [£| <R

for some R > 0. Set .
o) = (2ney Te

and define
o(t,x) = f 0°(x — Zy(w))dw
Q
and E
. €(t
E(t,x) = f 0 (x - TS w)dew and Vet x) = LD
Q oe(t, x)
Observe that (8.24) holds and
o€ e CO(0, T x M), E€eC™(0,T]xM;M), (8.31)

and so, since o¢ > 0, we reach the second assertion in (8.25). We also obtain the first inequality in (8.27). Since
2| < R, the third inequality in (8.27) holds. Direct computations give (8.26). We combine the latter property
together with the first and third inequalities in (8.27) and apply Lemma 8.1.4 [3] to conclude that the differential
equation (8.28) admits a unique solution S €. Set

~€ . € €
g = 8,00

to see, by (8.28), that
0,06+ V- (V) in D'((0,T) x M).
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Since &7, = o7, thanks to (8.27) we may apply Proposition 8.1.7 [3] to infer that 67 = o7 for any ¢ € [0, 1].

Let X5 € H be such that §(Xf) = o. Although it does not matter here, in fact, the optimal transportation
theory ensures that we can choose X to be the gradient of a convex function. Set

€= €0 e,

Observe that
#(ZH) =0f and Zf =vioXf Virel0,T] (8.32)

Since by (8.25) and (8.28), € € C*([0,T] x M; M), we obtain the first assertion in (8.24). The second one
follows from the inequality in (8.27) and the first identity in (8.28).

. T . .
In order to estimate fo L(t, 0, vi)dt we introduce the function

l(t,x,%)p if p>0
lo(t, x,m, p) = 0 if p=0,m=0
o if (p=0m#0) or p<O.

One checks that for any r € R and x € M, the bi—Legendre transform of y(z, x, -, -) equals ly(?, x, -, -). Hence,
lo(t, x,-,-) is a convex lower semicontinuous function. Furthermore, it is 1-homogeneous. We have

lo(t, x, E<(t, %), (£, x)) = Io(t, x, fg 0“(x = Zi(w)) E(w), Ddw). (8.33)
We use Jensen’s inequality to conclude that
lo(t, x, E<(t, x), (¢, X)) < fg 0°(x = Zi(w)lo(t, x, Zi(w), 1))dw . (8.34)
‘We combine (8.33) and (8.34) to conclude that
(2, x, ve(t, x))o(t, x) < L of(t, x = Z(w))I(t, x, X(w))dw.
We exploit (8.1) and the third inequality in (8.27) to obtain

I(t, x, v<(t, x))oé(t, x) < f 0°(x = ZHw)(t, Z(w), Ey(w))dw
Q

+ Mf 0°(x = Zy(w))lx = Zy(w)ldw, (8.35)
Q
where
M = k3 + Kk sup 10,0, v).
VISR
Observe that if we set o, := #(Z,), then
[ [ etz - sioido = [ ax [ o=y iy = e (36)
M Q M M

where ¢ := fM [xlo1(x)dx. We combine (8.35 — 8.36) to conclude that

f I(t, x, ve(t, X))o (¢, x)dtdx < eMTcy + f (1, Z(w), T(w))dtdw . (8.37)
(0.7)xM 0.7)xQ

Since o = ¢ * 0, we have (cf. e.g. Lemma 5.19 [14])

Wi(o, 0f) < Elid|2,
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which proves (8.30). Furthermore, since ¥ satisfies (¥ 3),
T T T T
‘ f F(2)dt - f T(a,)dz] - ‘ f F(o€)dt - f T(a,)dt‘ < Tmy(ellid]l,).
0 0 0 0
This, together with (8.37) implies
T T .
f L(t,0%,v;)dt < f L(t, %, 2)dt + eci MT + Tmg(ellid]|,). (8.38)
0 0

By (8.32) we have
T T
f L(t,0¢, v)dt = f L(1, 26, 26)dt.
0 0
This, together with (8.38), is all we need to conclude the proof. O

Theorem 8.5 (Eulerian coordinates with Lipschitz velocity). Let X, Y € HNL*(Q; M) and let X € W'2(0, T; H)
be such that Xy = Y, Xp = X. Then for any € > 0 and 6 > 0, there exists

* € W0, T; H) such that £* € C([0, T] x €; M), (8.39)
and
v e Whe((0, T) x M; M)
such that
S =vioZ
and
B0 +V - (0"Vv) = 0in D'((0,T) x M).
Furthermore,

Wa(#(Y), o), Wa(h(X),05) <6

T T T
f L(s,07%,vi)ds = f L(s, 25,35 ds < e + f dsf L(s,2;,3,)ds.
0 0 0 Q

Proof. If (8.7) fails, there is nothing to prove. Assume in the sequel that (8.7) holds. We apply the successive
approximation results in Lemmas 8.2, 8.3 and 8.4 to assume, without loss of generality, that X satisfies the same
properties as X exhibited in Lemma 8.4. More precisely,

T e Wh(0,T; H),

e C®([0,T];H), X eL™((0,T)xQ;M). (8.40)
Also, there are
0<oeC?(0,T]xM), veC>(0,T]xM;M) (8.41)
such that
0,0+ V- (ov)=0in D'((0,T) x M), (8.42)
and for any ball B ¢ M there exists 0 < R < co such that
T T
f (sup vl + Lip(v,. B))dt, f L(t,04,v)dt < o0, |V <R. (8.43)
0 B 0

Furthermore, there exists a unique solution to the initial value differential equation
S;=v,08, So=id (8.44)

and X, = S, 0.
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Let @ € C*(M; M) be such that Lip(®") < 2, |®"| < r + 2, and
x if |x|<r

') = {(r+2)i it =42
|x]
and set
V' (8, x) := v(t, D" (x)).

Observe that
vV e C([0,TIx M; M), V| <|IVllo, Lip(v") < 2Lip(Vlj0,71xB,.,)s (8.45)

where B, is the closed ball of radius r + 2 centered at the origin. Let S” € C*([0, T] x M; M) be the unique
solution to the differential equation
Sr=vioS/, So=id (8.46)
and set 7 := S} o Xy. Observe that ST maps B,_rg into B, and so, S7(x) = S,(x) for all x € B,_rg. Thus, if we
set
M\E ={weQ : |Zy(w) <r—TR},

we have
Y(w)=2(w) YweM\E, (8.47)
and also, since [Xg| € L'(Q),
lim LY9E") = 0. (8.48)

Using the last inequality in (8.43) and the first one in (8.45) we have

nx—xW=f
E"

This, together with (8.48) proves that {£'}, converges to X in L>(0, 7; H) and

f [ (w) - 2,(w)]d7"2dw < 4R’T LYUEN).
0

Wa(H(Z"). 8(Z)) =0, V1e[0,TI.

|m—2W=f

{27}, converges to ¥ in L*(0, T; H). By (8.1),

Similarly, since
. . 2
S (w) - 2,(w)' dw < 4R*T LYE),

11,27, 2,’) < k21(0,0, 2,’) + k3 < k3 + ko sup [(0,0,v).
[vI<R

We use the fact that 37 = v/ o X7 and apply Lemma 8.1 to conclude the proof of the theorem. [

Remark 8.6. Let t € [0,T] and X € H and assume f(t,-) = Vg(t,-) for some Lipschitz function g(t,-) €
C'(M) N Cp(M). If £ € H, then ) .
H(t, X, projypd) < H, X, {).

Proof. Since Vg(t,-) o X € F[X], we infer that for any ¢ € H,

Projyrx (¢ — Ve&(t,+) o X) = projypxd — Ve, ) o X.
This concludes the proof. O
9. Appendix III: Joint measurability of parameter-dependent optimal maps

For any integer m > 1 let B,, denote the ball centered at the origin with L™(B,,) = 1.
41



Gangbo & Tudorascu / Journal de Mathématiques Pures et Appliquées 00 (2018) 1-47 42

9.1. Some preliminaries

This subsection contains a Lemma and its corollary, both considered as part of the folklore in optimal
transport theory.
Lemma 9.1. Let uy and p; be Borel probability measures on By, absolutely continuous with respect to Lﬁk.
Then there exist a convex function ¢ : R¥ — R and a Borel set B C By, such that
(i) ¢ is Lipschitz and the range of 0;¢ is contained in [0, 1] for everyi € {1,--- ,k}.

(ii) Veyuo = .

(iti) po(Be \ B) =0. )

(iv) If ¢ : R* > R is any convex function such that Vo = w1, then {Vé # V$} N B = 0.

As a direct application of Lemma 9.1, we obtain the following corollary.

Corollary 9.2. Assume {ug}, = {/lSL%k tn and {pi}y = {/l'l’L%k }n are sequences of Borel probability measures on
By, absolutely continuous with respect to Lﬁk. Assume {43}, converges to A in L'(By), Ho = /IOL%k and {1},

converges narrowly to Ay in L'(By), u; = /IIL%‘C. Let ¢, : R¥ — R be a convex function such that Vg = 1y
and 0.¢,(x) is contained in By for every x € B;. Then

11}{“ IV, — Vol i2grey = 0,

where ¢ and B are as in Lemma 9.1. If we further assume that A, A}, Ao, A1 are positive and continuous on the
closure of By and ¢,, and ¢ are differentiable on By, then

lim Vg, (x) = Vo(x) for all x € By.

9.2. Measurability

We skip the proof of the first proposition below, as it can be obtained by standard mollification and renor-
malization arguments.

Proposition 9.3. Let d, k > 1 be integers and let A : By X B; — [0, o) be Lebesgue measurable such that
A(-, x) is a probability density for a.e. x € Bg. Then there exists a sequence of stricily positive functions
("), € C®(By x B,) and a Borel set T < B such that LEBNT) = 0 and

lim [|2"(-, %) = A¢, @, =0forall xe T ©.1)
and,
’}1_{{)10 1" = Al @xm,) = 0. 9.2)

Proposition 9.4. Fori = 1,2 let 4; € C*(B; x By) such that for all x € B, the functions A;(-, x) are positive
probability densities. For each x € By denote by A(-, x) the optimal map (with respect to the quadratic cost)
pushing A,(-, x) forward to A>(-, x), and by A(-, x) the optimal map pushing A>(-, x) forward to A(-, x). Then

(i) A, x), A, x) € C°(By; By) for each x € By.

(ii) Moreover, there exists 6 € (0, 1) such that
Ol < V,A(s,x) < 07T, 61 < V,A(s,x) < 07T,

for all (s, x) € By X By, where 1, denotes the k X k identity matrix.

(iii) The maps A, A belong to C(By x By; By).
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Proof. The first claim follows readily from a celebrated result by Caffarelli [7]. Obviously, the same regularity
is enjoyed by A(-, x), which we use to denote the optimal map pushing A>(, x) forward to 2;(-, x). Next, note
that 4; € C*(By x B,) for i = 1,2 implies the existence of constants m, C € (0, 1) such that

m< ¢, x) <m™ ¢, Dlleorg,, < € forall x e Byand i = 1,2.

Another fundamental result on the regularity of optimal transport maps from [7] yields (ii) for some 6 € (0, 1)
depending solely on m, C. To prove (iii), fix (so, xo) € B X B,. Since

IAGs, x) = Also, x0)l < [A(s, x) = Also, x)| + [A(s0, x) — Also, xo)l,

we see that it suffices to prove that the continuity of A(:, x) at sg is uniform in x and A(so, -) is continuous at x;.
As far as the former is concerned, we have

1
(t = to) - [A(t,y) = Alto, y)] = fo VA1 =Dty + 70t — 1) - (1 — to) dT

\%

o)t — 1o)? for all 1y, 1 € By, y € By.
Sety := xand t:= A(s, x), t := A(so, X) to get

2
(s = 50) - [As, %) = Ao, )] > O|A(s, x) = Als0, )|,
which implies
07" |s = sol > |A(s, x) = A(so, %),
s0 A(+, x) is Lipschitz uniformly with respect to x.

In order to show that A(sp, -) is continuous at xq, let {X,,},, € By converge to xg. Note that A(-, x,,) converges
to A(-, xo) uniformly. We apply Corollary 9.2 to conclude that {A(sg, x;,)},» converges to A(sg, Xp). O

Assume A c By is a Borel set with £9(4) > 0. Let
A B x A — [0, 0) i=1,2
be Borel maps such that 4;(-, x) are Borel probability densities for a.e. x € A. We extend A; to B; X B, by setting

Ai(s,x) =1if s € By and x € B, \ A. Set

u= /liﬂﬁ:imsd-
We obtain the disintegration (i) of 4/ given by

e = G0 Ly,
and so, 4;(-, x) is a well-defined function for almost every x € By, say x € Q7.

Let
K; :=1{4; >0}, K'={seB; : (s,x)eK;} (VxeBy),

and denote by proj the orthogonal projection of R+ onto R¥.

Lemma 9.5. There exist a F,—set F; (in fact, a countable union of compact sets) and a null measure Borel set
F? such that

(i) Ki=F;UF>”.
(i) K'x{x} = (Ff x{x}) U((F)" x {x}), K = FJ U (F*)".
(iii) For any x € By, F; is a Borel set.
(iv) For L%-almost every x € By, (F)* is of null measure in R* and so, for these x, Ni(x) := KI\ Fis of
null measure.
(v) Usep,(F; X {x}) = F; and so, it is a Borel set of full measure in K;.
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Proof. (i) For each integer n, there exists a compact set F!' C K; such that LK F!) < n~!and F! C K;. Set
Fo=|JFl, FPi=K\F. (9.3)

n>1

Note that F; and F;> are Borel sets such that the latter set is of null measure.

(i1) We have
K? > x) = K0 Bex () = (F; UF) 0 Be x () = (Fi 0 Be X (3) U (F 0 By X (1))

This is enough to conclude the proof of (ii).

(iii) Observe that
F¥ = proj (F} x (x}) = |_proj (F}' n (B x (x})).

n>1

Since the projection of any compact set is a compact set, we obtain that ;" is a Borel set as a countable union
of compact sets.

(iv) By Fubini’s Theorem,
0=LYF) = | LYF))dx
By
and so, for £9—almost every x € By, (F7)* is of null measure in RF. Since K = FfU(F?)',if s € Ni(x) = K'\F}
then x ¢ F and so, x € (F;°)". In other words, N;(x) C (F;°)*. Thus, N;(x) is of null measure in R*,
(v) The proof of (v) is obvious. ]

Remark 9.6. Since F;” is a set of null measure, fF Aidsdx = 1 and so, modifying A; on a set of null measure,
we may assume that F;° = ().

Theorem 9.7. There exists a Borel map A : Fy — F such that for £9—almost every x, A(-, x) pushes u. forward
to 12 and

W3 (o 1) = fF AG ) = sPi(ds).
1

Proof. By Proposition 9.3 there exist A7 € C (B x B,) positive functions such that A!(-, x) is a probability
density for every x € B, and
lim 147 = Aill @, = 0. 9.4)

From the proof of said proposition we also see that there are Borel sets T c B, of full measure in B, and
J c B, x B, of full measure in B; x B, such that

lim A7(s, x) = A,(s, x) Y (s,x) € J, 9.5)
and
147 Cox) = 4, Ollp@,y =0 if xeT. ©.6)

For each x € T, let A,(:, x) be the unique optimal map that pushes A/ (:, x)ﬂﬁk forward to A5(:, x)L’I‘Bk. Then, by
Proposition 9.4, A, is continuous on B; x B, and

|A"] < diam(By) . 9.7)

For x € Q' N T, let A(:, x) be the unique optimal map that pushes u! forward to y2. By Corollary 9.2, there
exists a Borel set B, C B, such that ,u}c(IB%k \ B,) =0and

lim f NG, x) = AC,0)Pdx =0, YxeQ;nT. 9.8)
n B
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Since

f w(B)dx = f A1(s, x)dsdx = f A1(s, x)dsdx = f UL(F)dx,
By B xB, F By

we conclude that for almost every x € By, say without loss of generality x € Q) N T,

1 = ui(By) = ul(FY).

Thus, u!(F 1aBY) = 0 for almost every x € B,. This, together with (9.8), implies that for a.e. x € B,
lim AnC,x) = AG,x)PPdx =0, VYxe QNT. 9.9
n Flr

Set
Jam(®) = 1A, %) = A, Ollrzgeyy,  fu®) = 1A, X) = AC, DIy

Claim 1. f,,, is a Borel function.

Proof 1. Let F { be the compact sets in (9.3) so that the sets GZ1 =B\ F { are open. Since Xa! is lower
semicontinuous, so is |A,(s, -) — A,u(s, ~)|2,\/Gzl (s,-), and so we use Fatou’s Lemma to conclude that

2 . 2
x— g2, (%) = f IAn(5.3) = A5, )P xr (5. 0)ds
B
is lower semicontinuous. Since

x = hy,(x) = i IAu(s, %) = Au(s, OPds = £, () + ga /(%)
k

is continuous, fnzm , is upper semicontinuous. By the monotone convergence theorem

fnm(x) = SluP ﬁl,m,l(x)

and so, f,, is a Borel function as a supremum of Borel functions.

Claim 2. yrnq; f, is a Borel function.

Proof 2. We use the triangle inequality to obtain

|ﬁl,m(x) - ﬁ‘t(-x)l < fm(x) lf X € T N Q; (910)

and so, by (9.9),
lim f, (%) = fu(x) if xeTNQj. 9.11)

Thus, xno; f» is a Borel function as a limit of Borel functions.

Claim 3. (A,), is a Cauchy sequence in L*(F)).

Proof 3. We use again (9.9) to conclude, in view of (9.7), that (f,), converges to 0 in L*(B,). Since
I fmllZaeyy < 20 fall7agr, + 20l 7o e,

we conclude that (A,), is a Cauchy sequence in L*>(B; x By).
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Thus, there exists a Borel map A € L?>(F) such that (A,), converges to A in L?>(F}). By (9.9), there exists a
Borelset To c T N Q"} of full measure such that, if x € T\, then

IA(s, x) — A(s, x)]*ds = 0.

F
Thus, if x € T
L5({s € FY | As, %) # A(s, )}) = 0. 9.12)
We use (9.12) to conclude that for x € Ty and F € C,(R¥) we have

f F(A(s, ), (s, x)ds = f F(A(s, x))A1(s, x)ds = f F(s)A2(s, x)ds.
F} Fy Fy

Thus,
A(" x)tilullv = #;'
We conclude by noting that

f IAGs, x) = 5”1 (s, x)ds = f IA(s, x) = P21 (s, X)ds = W2, 13).
Fy Ff

An immediate consequence of Theorem 9.7 is:

Corollary 9.8. Let A C B, be a Borel set of positive volume and Ay, A, : By X A — [0,00) be Lebesgue
measurable such that A;(-, x) is a probability density for all x € A, i = 1,2. Then there exists a Borel map
A B x A — RF such that for L%a.e. x €A the map A(-, x) pushes A,(:, x) forward to A,(-, x) optimally.

Corollary 9.9. Let A, B C By be Borel sets of positive volume. Let fi, f> : B XA — A be Borel functions such
that for all x € A we have

LA B) = LS 0T(B) > 0.
Then there exists an optimal map pushing L¥| 101 B) Jorward to LK (01 () Which is jointly Borel on By X A.

Proof. Since s € fi(-, x)"'(B) is equivalent to (s, x) € fl.‘l(B), we infer
8i(s, x) := 1y 1) (s) = lj;_—l(B)(S, x), i=1,2,
are Borel in (s, x); obviously, so are

A5, x) = gi(s, x) _gi(s,x) i=1.2.

D LGEGOTB) [ g, v

It follows (from previous theorem) that there exists a version A(-, x) of the optimal map pushing A, (-, x) forward
to A»(-, x) such that A is jointly Borel. But

1 1
f gi(t, x)dr = f g (1, x)dt
0 0

implies that A(-, x) is also the optimal map that pushes g (-, x) forward to g,(-, x), so we are done. O
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