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Abstract

We study the evolution of a system of n particles {(xi, vi)}n
i=1 in IR2d.

That system is a conservative system with a Hamiltonian of the form H[µ] =
W 2

2 (µ, νn), where W2 is the Wasserstein distance and µ is a discrete measure
concentrated on the set {(xi, vi)}n

i=1. Typically, µ(0) is a discrete measure
approximating an initial L∞ density and can be chosen randomly. When
d = 1, our results prove convergence of the discrete system to a variant
of the semigeostrophic equations. We obtain that the limiting densities are
absolutely continuous with respect to Lebesgue measure. When {νn}∞n=1

converges to a measure concentrated on a special d–dimensional sets, we
obtain the Vlasov-Monge-Ampère (VMA) system. When, d = 1 the VMA
system coincides with the standard Vlasov-Poisson system.
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AMS code: 49J40 82C40 47J25

1. Introduction

In this paper, we fix n distinct points (centers) cn
1 , · · · , cn

n ∈ IR2d and
consider the Hamiltonians Hn : IR2nd → IR defined by

Hn(z) = Hn(z1, · · · , zn) =
1
2n

min
σ∈Sn

||z− cn,σ||2 (1)

where, Sn is the set of permutations of n letters, and

cn,σ = (cn
σ(1), · · · , cn

σ(n)), ||z− cn,σ||2 =
n∑

i=1

|zi − cn,σ
i |2.
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Here, | · | denotes the Euclidean norm. One can readily check that Hn is
semiconcave since the eigenvalues of its second derivatives are less than
or equal to 1/n. Thus, the set where it is not differentiable is (2nd − 1)–
rectifiable. For z = (z1, · · · , zn), a point of differentiability of Hn, there
exists a unique σz ∈ Sn which minimizes the expression in (1) ; in that
case,

n∇zH
n(z) = z− cn,σz .

The Hamiltonian systems associated to nHn are then{
ẋi = vi − bn,σz

i

v̇i = −(xi − an,σz

i ).
(2)

Here, we have used the notation zi = (xi, vi), cn
i = (an

i , bn
i ) ∈ IRd × IRd =

IR2d . We study the Hamiltonian systems in (2) and their limits when n
tends to +∞. We assume throughout this study that there exists a constant
E > 0 independent of n such that

|cn
i | ≤ E ∀i = 1, · · · , n, n = 1, 2, · · · . (3)

Depending on the dimension d and the geometry of the set {cn
i }n

i=1

when n is large, the system in (2) converges to the 1–dimensional Vlasov-
Poisson system, the d–dimensional Vlasov-Monge-Ampère system or the
semigeostrophic equations. The Vlasov-Poisson system appears in the flu-
ids mechanics literature and has been extensively studied recently, [4], [7],
[21], [22], in contexts completely different from ours. The Vlasov-Monge-
Ampère system was apparently discovered by Brenier [8] who considered
the discrete system in (2) and its connection with the Euler incompressible
equations as n tends to +∞. We also refer the reader to [10] and [20] for
further studies. The semigeostrophic system was introduced as a model for
large-scale flows of the atmosphere and ocean by Eliassen, [16], and Hoskins
[19]. A semi-discrete solution procedure for them was introduced by Cullen
and Purser, [14], [15]. Our discrete scheme is different from theirs. The
continuous semigeostrophic system has been analysed by [9] and [13]. The
Hamiltonian form of the continuous evolution equation was analysed by [23]
and a discrete form related to ours was introduced by [6], whose study can
be viewed as a preliminary to the current study. For wider reviews see also
the monograph by L.C. Evans [17] and the book by Cullen, [12]. The rela-
tion of the Hamiltonian form of the semigeostrophic equations to that of the
2d incompressible Euler equations is discussed by [23]. Discrete schemes for
the 2d incompressible Euler equations are reviewed by [3]. The convergence
of the discrete scheme in (2) appears to be easier than the discrete scheme
for the 2d incompressible Euler equations as well as the one for the n–body
problem because the velocity field is more regular.

We first collect useful notation which will be used throughout this paper
and recall the definition of the Wasserstein distance between two probability
measures defined on a normed space.
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We denote by Id the d× d identity matrix and by idd the identity map
on IRd. We denote by I the (2d)× (2d) matrix and by id the identity map
on IR2d. We denote by J the symplectic matrix

J =
(

0 −Id

Id 0

)
,

which is the rotation of angle π/2 when d = 1.
- If R > 0 and z ∈ IRD, BR(z) denotes the ball in IRD of center z and

radius R. If B ⊂ IRD we denote by Bc the complement of B.
- We denote by P(A) the set of Borel probability measures on a metric

space (A,dist). If r > 0 and µ ∈ P(A), the r-moment of µ with respect to
the xo ∈ A is

Mr(µ)(xo) =
∫

A

distr(x, xo)dµ(x).

When M2(µ)(0) < +∞, we write µ ∈ P2(A). In case A ⊂ IRD, Pa(A) is the
set of µ ∈ P(A) which are absolutely continuous with respect to LD. In the
later case, we denote by Pa

2 (A) the intersection of Pa(A) and P2(A).
- Assume that µ is a measure on a topological space X and that ν is

a measure on a topological space Y. We say that a Borel map t : X → Y
transports µ onto ν and we write t#µ = ν if ν[B] = µ[t−1(B)] for all Borel
sets B ⊂ Y. We sometimes say that t pushes µ forward to ν.

- If h ∈ C1(IR2d), the Hamiltonian vector field associated with h is
Xh = J∇h. When X ∈ C1([a, b] × IR2d, IR2d) where 0 ≤ a < b, the flow of
X is Φ : [a, b]× IR2d → IR2d defined by{

Φ̇(t, z) = X(t, Φ(t, z)) t ∈ [a, b], z ∈ IR2d

Φ(0, z) = z, z ∈ IR2d.
(4)

If we set µo = δz and set µt = Φ(t, ·)#µo, then

d

dt
µt +∇ · (µtX) = 0. (5)

Assume that (X, | · |) is a normed space, if µ, ν ∈ P2(X), we define Γ (µ, ν)
to be the set of Borel probability measures on X ×X which have µ and ν
as their marginal, i.e. such that µ[A] = γ[A×X], γ[X ×B] = ν[B] for all
Borel sets A,B ⊂ X. We call any element of Γ (µ, ν) a transport scheme for
µ and ν. The Wasserstein distance W2(µ, ν) between µ and ν is defined by

W 2
2 (µ, ν) := inf

γ

{∫
X×X

|x− y|2dγ(x, y) : γ ∈ Γ (µ, ν)
}

. (6)

Properties of the metric W2 can be found in [2].
Any minimizer γo in (6) is called an optimal transfer plan between µ

and ν. We write γo ∈ Γo(µ, ν).
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Assume that µ is a Borel probability measure on X = IRD that vanishes
on (D−1)–rectifiable sets. Then for any ν ∈ P2(IRD), Γo(µ, ν) is a singleton,
i.e. there exists a unique minimizer γo in (6). That minimizer is character-
ized by the fact that γo = (id× tν

µ)#µ for some map tν
µ : IRD → IRD which

is the gradient of a convex function. The map tν
µ is the optimal map that

pushes µ onto ν.

We next demonstrate the various interpretations of the Hamiltonian sys-
tem (1). We endow P2(IR2d), the set of Borel probability measures on IR2d

with second moment bounded, with the Wasserstein distance W2, defined in
(6). A sequence {µn}∞n=1 ⊂ P2(IR2d) converges in the Wasserstein distance
to µ for the W2 metric if and only if {µn}∞n=1 converges narrowly to µ and
we have convergence of the second moment:∫

IR2d

|z|2dµn(z) →
∫

IR2d

|z|2dµ(z).

We refer the reader to [2] remark 7.1.11 which is one of the many sources
where one can find the proof of that statement.

When {νn}∞n=1 = {1/n
∑n

i=1 δcn
i
}∞n=1 converges to a probability mea-

sure ν in the W2 metric and {µn}∞n=1 = {1/n
∑n

i=1 δzi
}∞n=1 converges to a

probability measure µ in the W2 metric then, as n tends to +∞,

Hn(z1, · · · , zn) = 1/2W 2
2 (µn, νn) → H(µ) = 1/2W 2

2 (µ, ν).

When d = 1 and ν = χQL2, where Q ⊂ IR2 is an open set and L2 is the
Lebesgue measure on IR2, then H is the Hamiltonian for the semigeostrophic
system. If instead,

cn
i = (

i

n
− 1

2
− 1

2n
, 0) i = 1, · · · , n

(are one-dimensional), setting zi = (xi, vi), we observe that

|z− cn,σ|2 =
n∑

i=1

v2
i +

n∑
i=1

(xi −
σ(i)
n

+
n + 1
2n

)2

=
n∑

i=1

(v2
i + x2

i ) +
n∑

i=1

(
σ(i)
n

− n + 1
2n

)2 − 2 < x;
σ

n
− n + 1

2n
> .

(7)

Here, we have set σ = (σ(1), · · · , σ(n)). The von Neumann inequality gives
us that the minimum in (1) is attained for σz such that xσ−1

z is the nonde-
creasing rearrangement of x. Thus,

1
4n2

n∑
i,j=1

|xi − xj | =
1
n

< x;
σz

n
− n + 1

2n
> . (8)
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Also,

1
2n

n∑
i=1

(σz(i)
n

− n + 1
2n

)2

=
1
2n

( 1
n2

n∑
i=1

i2 +
(n + 1)2

4n
− n + 1

n2

n∑
i=1

i
)

=
1
2n

1
12

(n + 3− 1
n

). (9)

We combine (7), (8) and (9) to conclude that

Hn(z1, · · · , zn) =
|z|2

2n
− 1

4n2

n∑
i,j=1

G(xi − xj) +
1
24

(1 + 3/n− 1/n2),

where G(x) = |x| is the 1–dimensional Green’s function for the heat equa-
tion. The computations which led to the expression of Hn are slight mod-
ifications of computations made by Brenier in [6], an unpublished paper.
Since {1/n

∑n
i=1 δcn

i
}∞n=1 converges in the W2 sense to the one-dimensional

Lebesgue measure restricted to the interval (− 1
2 , 1

2 ), then as n tends to +∞,
Hn(z1, · · · , zn) converges to

H(µ) =
∫

IR2

|z|2

2
dµ(x, v)− 1

4

∫
IR

G ∗ µ1dµ1(x)− 1
24

, (10)

where µ1 is the first marginal of µ. In other words,∫
IR2

|z|2

2
dµ(x, v)− 1

4

∫
IR

G ∗ µ1dµ1(x)− 1
24

= W 2
2 (µ, χ(− 1

2 , 1
2 )L1 × δ0).

Thus, H is the Hamiltonian for the 1–dimensional Vlasov-Poisson equation{
∂tf(t, x, v) + ∂x(vf(t, x, v)) = ∂v(f(t, x, v)∇xΦ(t, x))
∂2

xxΦ(t, x) = 1− ρ(t, x),
(11)

where ρ(t, x) =
∫

IR
f(t, x, v)dv.

When d > 1 the identity in the second line of (11) becomes nonlinear as
we see next.
Vlasov-Monge-Ampère system. Conclusions similar to (10) and (11)
can be reached when d > 1. Assume that νo = (χQHd)× δ0 where Q ⊂ IRd

is a unit cube, 0 ∈ IRd is the origin and Hd is the d–dimensional Hausdorff
measure. Let µ = fdxdv be an absolutely continuous probability measure
on IR2d and denote by µ1 = ρ(x)dx its first marginal. Let ϕ : IRd → IR
be a convex function such that (∇xϕ)#µ1 = χQHd. Clearly, Φ : IR2d → IR

defined by Φ(x, v) = ϕ(x) is a convex function. If F ∈ Cc(IR2d) we have∫
IR2d

F (∇Φ(x, v))dµ(x, v) =
∫

IR2d

F (∇xϕ(x), 0)dµ(x, v)

=
∫

IRd

F (∇xϕ(x), 0)dµ1(x) (12)

=
∫

Q

F (a, 0)da =
∫

IR2d

Fdνo. (13)
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The equality in (12) is due to the fact that µ1 is the first marginal of µ, and
the first one in (13) is due to the fact that (∇xϕ)#µ1 = χQHd. This proves
that (∇Φ)#µ = νo. The Monge-Kantorovich theory asserts that if ∇Φ, the
gradient of a convex function, transports µ onto ν, then (id×∇Φ)#µ is the
unique minimizer in (6) when X = IR2d. Here, id is the identity map in
IR2d. Thus, if µ2 is the second marginal of µ, we have that

W 2
2 (µ, νo) =

∫
IR2d

|(x, v)−∇Φ(x, v)|2dµ(x, v)

=
∫

IR2d

(|x−∇xϕ(x)|2 + |v|2)dµ(x, v)

=
∫

IRd

|x−∇xϕ(x)|2dµ1(x) +
∫

IRd

|v|2dµ2(v). (14)

By (14)

H(µ) = 1/2W 2
2 (µ1, χQHd) +

∫
IRd

|v|2

2
dµ2(v). (15)

Let ϕρ be a function depending on ρ, characterized by the fact that it is
convex, ∇xϕρ maps the support of ρ onto Q and

ρ(x) = det∇2
xxϕρ(x), (16)

The infinite dimensional Hamiltonian system associated to (16) is{
∂tf(t, x, v) + divx(vf(t, x, v)) = divv(f(t, x, v)∇xΦρt

(t, x))
det[Id −∇2

xxΦρt(x)] = ρt(x).
(17)

where ϕρt
(x) = |x|2/2− Φρt

(x) is a convex function in the x variables and
Id is the d×d identity matrix. We have obtained in (17) the analogue of the
Vlasov-Monge-Ampere system,studied first by Brenier [7] and also later by
Brenier and Loeper [10]. The expression det∇2

xxϕρ(x) whose dependence in
∇2

xxϕρ(x) is linear in the case d = 1 becomes nonlinear for d > 1.

In section 2 we develope the necessary tools to prove under what con-
dition the solutions of the systems in (2) converge to solutions which are
absolutely continuous with respect to Lebesgue measure. For the conve-
nience of the reader, we summarize some of the results of section 3 at the
end of this introduction. Let

µn
t = 1/n

n∑
i=1

δ(xn
i (t),vn

i (t))

where (xn
i (t), vn

i (t)) are solutions to the differential equation (2). The main
result of section 3 is that if, at time t = 0, µn

o converges in the metric W2

to a probability measure µo << L2d of bounded support on IR2d as n be-
comes large, then up to a subsequence, at each time t ∈ [0, T ], µn

t converges
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in the metric W2 to µt << L2d. In fact, we show that the initial val-
ues (xn

i (0), vn
i (0)) can be chosen randomly. To make accurate statements,

we start by considering a probability measure space (Ω,Σ, IP ) and inde-
pendent identically distributed random variables ξi : Ω → IR2d such that
ξi #IP = µo. We assume that µo is a probability measure of bounded sup-
port on IR2d and that T > 0. We assume that we are given sequences of
finite terms {cn

i }n
i=1 ⊂ IR2d and there exists a constant E > 0 such that (3)

holds. We set νn = 1/n
∑n

i=1 δcn
i
. Let Φn : [0, T ] × IR2nd → IR2nd be the

flow for the Hamiltonian nHn, where Hn is defined in (1). We consider the
empirical distributions

µn,ω
t =

1
n

n∑
i=1

δΦn
i (t,ξn(ω)),

where ξn(ω) = (ξ1(ω), · · · , ξn(ω)).

Theorem 1 (Summary of section 3). In addition to the above assump-
tions, we further assume that µo = ρoL2d and that ρo is a bounded function.
We assume that {νn}∞n=1 converges to ν in the Wasserstein distance. Then
there exists a IP -measurable set Ω′ ⊂ Ω such that IP [Ω′] = 1 and for every
ω ∈ Ω′, the following hold:
(i) t → Φn(t, ξn(ω)) is well defined and is absolutely continuous on [0, T ].
(ii) (absolute continuity of the limit of the empirical measures).
There exists a sequence {nk(ω)}∞k=1 (depending on ω) and for each t ∈ [0, T ],
there exists a probability density µω

t << L2d such that the empirical mea-
sures {µnk(ω),ω

t }∞k=1 converge to µω
t in the metric W2.

(iii) There exists a constant a(ω) < +∞ such that W2(µω
t , µω

s ) ≤ a(ω)|t−s|
for all s, t ∈ [0, T ].
(iv) µω

o = µo.
(v) (semigeostrophic system in arbitrary dimension). There exists
convex, uniformly Lipschitz functions φω

t : IR2d → IR such that (∇φω
t )#µω

t =
ν and

d

dt
µω

t + divx

(
(v −∇vφω

t )µω
t

)
= divv

(
(x−∇xφω

t )µω
t

)
in the sense of distributions.
(vi) (conservation of the Hamiltonian) We have H[µω

t ] = H[µo] for
t ∈ [0, T ].

The proof of theorem 1 is provided in theorem 4.

2. Convergence of empirical distribution and measure preserving
maps

Throughout this section, (Ω,Σ, IP ) is a metric probability space. We
assume that we are given Ro > 0 and
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(H1) µo = ρoLD ∈ Pa(IRD), supported by BRo
, the open ball of radius

Ro, centered at the origin.
We assume that we are given a sequence of Borel maps

(H2) ξi : Ω → IRD that are independent and such that ξi #IP = µo.

It is well-known that we can approximate µo in the narrow convergence
sense by the sequence of empirical distributions {µn,ω

o }∞n=1, given by

µn,ω
o =

1
n

n∑
i=1

δξi(ω),

as shown by (19). These measures are randomly chosen. We then let the
approximate initial measure µn,ω

o be transported by Hamiltonian flows φn
t :

IRnD → IRnD to obtain time-dependent random probability measures µn,ω
t .

The purpose of this section is to show that since the Hamiltonian flows are
measure-preserving, under appropriate assumptions, if µo << LD with an
L∞ density, then up to a subsequence (which depends on ω), {µn,ω

t }∞n=1

converges narrowly to a measure µω
t which is absolutely continuous with

respect to LD. It is not a loss of great generality to first consider φn
t :

IRnD → IRnD which are time independent. Later, we also comment on
necessary conditions that need to be imposed, for our conclusions to hold.

We consider a family of maps φn : IRnD → IRnD which preserve Lebesgue
measure in the sense that

φn
#LnD = LnD, (18)

for each n positive integer. We define a new sequence of empirical distribu-
tions

µn,ω =
1
n

n∑
i=1

δφn
i (ξn(ω)),

where φn
i are the components of φn, i.e. φn = (φn

1 , · · · , φn
n) and

ξn = (ξ1, · · · , ξn).

Note that {φn
1 (ξn), · · · , φn

n(ξn)}may not be independent and this is a source
of complication while studying the points of accumulations of the sequences
{µn,ω}∞n=1. In this section, we partially characterize these points of accu-
mulation for the narrow topology.

In the simple case where the φn’s are the identity map on IRnD and ϕ ∈
C(IRD) is a bounded function, then, by the Strong Law of Large Numbers,∫

IRD

ϕdµn,ω =
1
n

n∑
i=1

ϕ(ξi(ω)) → IE(ϕ ◦ ξ1) =
∫

IRD

ϕdµo (19)

for IP–almost every ω. Here, IE(ϕ◦ξ1) is the expectation of ϕ◦ξ1 and we have
used that {ϕ ◦ ξi}∞i=1 is a collection of independent identically distributed
random variables. However, the set where (19) fails, is a set of IP–zero
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measures, which depends on ϕ. We use (H1) and (H2), together with the
fact that C(B̄Ro

) is separable to find a set Ω′ ⊂ Ω such that IP [Ω′] = 1 and
(19) holds for all ω ∈ Ω′, ϕ ∈ C(IRD). In other words, for each ω ∈ Ω′,

{µn,ω}∞n=1 converges narrowly to µo (20)

as n tends to +∞.

We next note that we cannot expect that µ1 << LD unless more restrictions
can be placed on φn.

1. The L∞–norm may be increased unless there are extra assumptions
on φ.
If T, S ∈ C1(IRD, IRD) are two Borel maps, inverse of each other and we
set

φn
1 = T, φn

2 = S, φn
3 = T, φn

4 = S, · · · ,

for n even. The previous reasoning can be adapted to prove that

{µn,ω}∞n=1 converges narrowly to (T#µo + S#µo)/2 = µ1 (21)

as n tends to +∞. By (21), µ1 = ρ1LD and we may have chosen T such
that

||ρ1||L∞ ≥
||ρo||L∞(BRo )

2||det∇T ||L∞(BRo )
(22)

and so, in general, one cannot expect that ||ρ1||L∞(T (BRo )∪S(BRo )) ≤
||ρo||L∞(BRo ).

2. Concentration to a Dirac mass may occur unless there are extra
assumptions on φ.
When

φn
1 (z1, · · · , zn) = 2n(n−1)z1, φ

n
2 (z1, · · · , zn)

=
z2

2n
, · · · , φn

n(z1, · · · , zn) =
zn

2n
,

one can readily check that

{µn,ω}∞n=1 converges narrowly to δ0. (23)

(23) shows that one cannot expect that µ1 << LD unless more re-
strictions, such as we give in (24) below, are imposed on φn. Under this
additional assumption, we learnt from (21) that even if we succeed in prov-
ing that µ1 = ρ1LD << LD we cannot expect a control of the L∞-norm of
the form ||ρo||L∞ ≥ ||ρ1||L∞ . In fact, (22) suggest that ||ρ1||L∞ may become
very large.

Suppose that there exists R1 ≥ 1/2 such that

|φn
i (z1, · · · , zn)| ≤ R1 (i = 1, · · · , n, and n = 1, · · · ), (24)
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for all z1 ∈ BRo
, · · · , zn ∈ BRo

. In section 3, we show that this can be proved
for the semigeostrophic shallow water system. The aim in this section is to
prove under this condition that if up to a subsequence which depends on
ω, {µn,ω}∞n=1 converges narrowly to µω IP–almost everywhere, then µω <<
LD. To achive that goal, we state two intermediary lemmas.

Lemma 1. Assume that µo = ρoLD and {ξi}∞i=1 are such that ρo ∈ L∞ and
that (H1), (H2) hold. Let Co = max{||ρo||L∞ , 1/2|QR1 |} and φn : IRnD →
IRnD be Borel maps which preserve Lebesgue measure in the sense that (18)
holds and assume that (24) holds (with 2R1 ≥ 1). If up to a subsequence
(which depends on ω), {µn,ω}∞n=1 converges narrowly to µω IP–almost ev-
erywhere, then for all Borel sets A ⊂ IRD, IP{ω ∈ Ω : µω[A] > p} = 0
whenever p ∈ (0, 1) and 2Co|QR1 ||A|p < 1.

Proof. 1. We first claim that for each Borel set A ⊂ IRD such that |A| ≤ 1,
for any real number p ∈ (0, 1) and integer n ≥ 1,

IP{ω ∈ Ω : µn,ω[A] ≥ p} ≤
(
2Co|QR1 |1−p|A|p

)n

. (25)

where QR1 = [−R1, R1]× · · · × [−R1, R1] ⊂ IRD. We prove this claim only
for p such that pn is not an integer. The proof in the case where pn is an
integer follows the same line of argument. Let q = [pn] + 1 where [·] is the
greatest integer part function. Set

I = {i = (i1, · · · , iq) ∈ N : 1 ≤ i1 < i2 < · · · , iq ≤ n}.

For i ∈ I we denote by Qi the subset of IRnD of the form A1 ×A2 × · · ·An

where,

Aj =

{
A j = i1, · · · , iq

QR1 j 6= i1, · · · , iq.

Since µn,ω[A] ∈ {0, 1
n , · · · , n−1

n , 1} and pn is not an integer then µn,ω[A] ≥ p
is equivalent to µn,ω[A] ≥ q/n. Hence,

IP{ω ∈ Ω : µn,ω[A] ≥ p} = IP{ω ∈ Ω : µn,ω[A] ≥ q/n}
= IP{ω ∈ Ω : ∃i ∈ I, φn(ξn(ω)) ∈ Qi}

≤
∑
i∈I

IP{ω ∈ Ω : φn(ξn(ω)) ∈ Qi}

≤
∑
i∈I

IP{ω ∈ Ω : ξn(ω) ∈ (φn)−1[Qi]}
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This, together with the facts that (18) holds and the ξi’s are independent
yields that

IP{ω ∈ Ω : µn,ω[A] ≥ p} ≤
∑
i∈I

µo × · · · × µo

[
(φn)−1[Qi]

]
≤

∑
i∈I

||ρo||nL∞LnD
[
(φn)−1[Qi]

]
=

∑
i∈I

||ρo||nL∞LnD[Qi]

≤ 2n||ρo||nL∞ |QR1 |n−q|A|q

≤ 2n||ρo||nL∞ |QR1 |n−np|A|np.

(26)

To obtain the last inequality in (26) we have used that |A| ≤ 1 and |QR1 | ≥
1. This proves (25) with Co = ||ρo||L∞ .

2. Let Ω1 be a subset of Ω such that IP [Ω1] = 1 and for all ω ∈ Ω1,
there exists an increasing, unbounded sequence {nk(ω)}∞k=1 such that

{µnk(ω),ω}∞k=1 converges narrowly to µω (27)

as k tends to +∞. Let A be a Borel subset of IRD such that 2Co|QR1 ||A|p <
1. Since |QR1 | ≥ 1 we conclude that

2Co|QR1 |1−p|A|p < 1. (28)

For ε > 0, thanks to (28), we may choose an open set Aε containing A
and such that

|Aε| < |A|+ ε < 1, 2Co|QR1 |1−p|Aε|p < 1. (29)

We use (27) to conclude that

lim inf
k→+∞

µnk(ω),ω[Aε] ≥ µω[Aε].

Consequently, for each integer k > 1,

{ω ∈ Ω1 : µω[Aε] > p} ⊂ ∪∞n=k{ω ∈ Ω1 : µn,ω[Aε] ≥ p}. (30)

Since by (29) |Aε| < 1, we conclude that (25) holds for Aε in place of A. We
could conclude the proof of the lemma here by simply invoking the Borel-
Cantelli lemma. However, for those not familiar with the Borel-Cantelli
lemma, let us detail the arguments yielding the proof. We use (25) with Aε

in place of A, together with (30), to conclude that

IP{ω ∈ Ω : µω[Aε] > p} ≤
∞∑

n=k

(
2Co|QR1 |1−p|Aε|p

)n

=

(
2Co|QR1 |1−p|Aε|p

)k

1−
(
2Co|QR1 |1−p|Aε|p

) .
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Hence,

IP{ω ∈ Ω : µω[A] > p} ≤

(
2Co|QR1 |1−p|Aε|p

)k

1−
(
2Co|QR1 |1−p|Aε|p

) . (31)

We let first ε tend to 0 in (31), then k tends to +∞ in the subsequent
inequality to conclude the proof of the lemma. ut

Warning. The inequality in (25) yields that

IP{ω ∈ Ω : µn,ω[A] ≥ p} = 0 (32)

whenever A ⊂ IRD and |A| = 0. This is not sufficient to give the conclusion
that µn,ω << LD. Indeed, let us consider the family of measures

νn,ω = δξ1(ω),

which does not satisfy the assumptions in lemma 1, but are used just to
illustrate that (32) cannot be used as a short cut to the conclusions of the
theorem. Clearly, if p ∈ (0, 1), since νn,ω[A] ≥ p is equivalent to νn,ω[A] = 1
we conclude that

IP{ω ∈ Ω : νn,ω[A] ≥ p} = IP{ω ∈ Ω : νn,ω[A] = 1}
= IP{ω ∈ Ω : ξ1(ω) ∈ A} = µo[A].

Thus (32) holds although νn,ω << LD fails.

Lemma 2. Assume that {µω}ω∈Ω is a family of Borel probability measures
on IRD. Assume that there exists a constant C > 1 such that for all Borel
sets A ⊂ IRD, IP{ω ∈ Ω : µω[A] > p} = 0 whenever p ∈ (0, 1) and
2C|A|p < 1. Then, there exists a IP -measurable set Ω′ ⊂ Ω such that
IP [Ω′] = 1 and

µω[A] ≤ ln(2C)
− ln |A|

(33)

for all ω ∈ Ω′, and all A ⊂ IRD such that 2C|A| < 1. Here, we have denoted
by |A| the Lebesgue measure LD(A) of A.

Proof. 1. We first prove a weaker statement. Let A ⊂ IRD be a Borel set
such that 0 < 2C|A| < 1. Set

p =
ln(2C)
− ln |A|

.

We use that C > 1 to conclude that p ∈ (0, 1). Since 2C|A|p = 1 we may
find a sequence {pn}∞n=1 ⊂ (0, 1) decreasing to p and such that 2C|A|pn < 1.
For each n, there exists a set Nn ⊂ Ω such that IP [Nn] = 0 and µω[A] ≤ pn

for all ω ∈ Ω \Nn and all n ≥ 1 integer. Set

N(A) = ∪∞n=1Nn.
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We have IP [N(A)] = 0 and µω[A] ≤ pn for all ω ∈ Ω \ N(A). Letting n
tends to +∞, we conclude that

µω[A] ≤ p =
ln(2C)
− ln |A|

for all ω ∈ Ω \N(A).
2. We next select a specific countable basis for the standard topology

of IRD. Let R1 be the set of rectangles in IRD, whose vertices are rational
numbers. Any rectangle being completely determined by D+1 of its vertices,
we clearly have that R1 is countable since it can be imbedded in QD(D+1).
We conclude that the set Rk which consists of subsets of IRD which are
k-unions of subsets of R1, is countable. Thus,

R = ∪∞k=1Rk

is also countable. We denote by A the set of A ∈ R such that 2C|A| < 1.
For each of these A, we define Ω(A) = Ω \N(A) and we set

Ω′ = ∩A∈AΩ(A).

Since A is countable and by assumption IP [Ω(A)] = 1 for each A ∈ A, we
conclude that IP [Ω′] = 1.

3. Let K ⊂ IRD be a compact set such that 2C|K| < 1. There exists
a sequence Rn ∈ A such that K ⊂ Rn and |Rn| < |K| + 1/n. Thus, for
ω ∈ Ω′ and n large enough so that 2C(|K|+ 1/n) < 1, we have

µω[K] ≤ µω[Rn] ≤ ln(2C)
− ln |Rn|

≤ ln(2C)
− ln(|K|+ 1/n)

.

Letting n tend to +∞ in the previous inequalities, we conclude that

µω[K] ≤ ln(2C)
− ln |K|

. (34)

4. Let ω ∈ Ω′ and let A ⊂ IRD be a Borel set such that 2C|A| < 1.
Since µω is a Radon measure, for each integer n there exists a compact set
Kn ⊂ IRD such that Kn ⊂ A and µω[A] < µω[Kn]+1/n. Hence, 2C|Kn| < 1
and so, using (34), we have

µω[A] < µω[Kn] + 1/n ≤ ln(2C)
− ln |Kn|

+ 1/n ≤ ln(2C)
− ln |A|

+ 1/n.

Letting n tend to +∞, we conclude the proof of the lemma. ut

Remark 1. Assume that µ is a probability measure on IRD such that
µ[A] ≤ C/

∣∣ln |A|∣∣ for, say, all |A| ≤ 1/2. Then µ = ρLD for some ρ :
IRd → [0,+∞] such that∫

IRD

ϕ(ρ)ρdx ≤ ϕ(2)− ϕ(0) + C

∫ ∞

2

ϕ′(s)
ln s

ds.
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Here, ϕ : [0,+∞) → [0,+∞) is any increasing function. For instance one
can choose ϕ(t) = (ln t)1−ε for t large, where ε ∈ (0, 1). Indeed,∫

IRD

ϕ(ρ)ρdx =
∫

IRD

ϕ(ρ)dµ =
∫ ∞

0

µ{ϕ(ρ) > t}dt =
∫ ∞

0

µ{ρ > s}ϕ′(s)ds.

(35)
For s ≥ 2, if we set A = As := {ρ > s}, Markov’s inequality gives 2|As| ≤
s|As| < 1. This, together with (35), yields∫

IRD

ϕ(ρ)ρdx ≤
∫ 2

0

ϕ′(s)ds+
∫ ∞

2

Cϕ′(s)∣∣ln |As|
∣∣ds ≤ ϕ(2)−ϕ(0)+C

∫ ∞

2

ϕ′(s)
ln s

ds.

This completes the proof of the remark.

The main theorem of this section is the following.

Theorem 2 (Absolute continuity of the limit of the empirical dis-
tributions). Assume that µo = ρoLD is such that ρo ≤ Co for a con-
stant Co > 1/|QR1 |. Assume that (H1), (H2) hold and that 2R1 ≥ 1.
Let φn : IRnD → IRnD be Borel maps which preserve Lebesgue measure in
the sense that (18) holds and assume that (24) holds. Assume there exists
a subsequence {nk(ω)}∞k=1 (which depends on ω,) such that {µnk(ω),ω}∞k=1

converges narrowly to µω IP–almost everywhere. Then there exists a IP -
measurable set Ω′ ⊂ Ω such that IP [Ω′] = 1 and

µω[A] ≤ ln(4Co|QR1 |)
− ln |A|

for all Borel sets A ⊂ IRD such that 4Co|QR1 ||A| < 1.

Proof. The proof of this theorem is a direct consequence of lemmas 1 and
2. ut

Remark 2. Let Ω′ be the set found in theorem 2 . By remark 1, µω << LD

for each ω ∈ Ω′.

3. Convergence of the spatially discrete scheme

Throughout this section, (Ω,Σ, IP ) is a metric probability space. We
assume that

(C1) µo = ρoL2d ∈ Pa
2 (IR2d)

We assume that we are given a sequence of Borel maps
(C2) ξi : Ω → IR2d that are are independent and such that ξi #IP = µo.

The variant of the de la Vallée–Poussin lemma proven in [11] (page 835–
836), together with (C1) gives a nonnegative, convex, increasing function
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ζ ∈ C1([0,+∞)) with the property that ζ(0) = 0, limt→+∞ ζ(t)/t = +∞,
||ζ”||L∞ ≤ 1 and ∫

IR2d

ζ(|z|2)dµo(z) < +∞. (36)

It is easy to see that we can approximate µo in the narrow convergence
sense by a sequence of discrete probability measures {µn,ω

o }∞n=1 chosen ran-
domly and given by

µn,ω
o =

1
n

n∑
i=1

δ(ξi(ω)).

More precisely, the Strong Law of Large Numbers ensures that for IP–almost
every ω ∈ Ω, {µn,ω

o }∞n=1 converges narrowly to µo and the second moments
of {µn,ω

o }∞n=1 converge to the second moments of µo. In other words, for
IP–almost every ω ∈ Ω,

lim
n→+∞

W2(µn,ω
o , µo) = 0. (37)

As in the introduction, we first fix n distinct points cn
1 = (an

1 , bn
1 ) , · · · ,

cn
n = (an

n, bn
n) ∈ IR2d and consider the Hamiltonians Hn : IR2nd → IR defined

by

Hn(z1, · · · , zn) =
1
2n

min
σ∈Sn

||z− cn,σ||2

where Sn is the set of permutations of n letters, we have used the notation

cn,σ = (cn
σ(1), · · · , cn

σ(n)), z = (z1, · · · , zn),

and the Euclidean norm of z− cn,σ is denoted by ||z− cn,σ||. Set

νn = 1/n

n∑
i=1

δcn
i

and µ = 1/n

n∑
i=1

δzi .

If we identify Γ (µ, νn) with the set of bistochastic matrices, Birkoff’s theo-
rem gives that its extreme points are the permutation matrices. From this
and the fact that W 2

2 (µ, νn) is the infimum of a linear functional of bis-
tochastic matrices, it is clear that Hn(z1, · · · , zn) = 1/2W 2

2 (µ, νn). Observe
that

Hn(z1, · · · , zn) =
||z||2 + ||cn||2

2n
− 1

n
Gn(z),

where
Gn(z) = sup

σ∈Sn

〈z; cn,σ〉, (38)

is clearly a convex function as a supremum of finitely many linear functions.
Hence the eigenvalues of the matrix of the second derivatives of Hn are less
than or equal to 1/n. Note that the extreme points of ∂Gn(z) are the cn,σ

which satisfy Gn(z) = 〈z; cn,σ〉. When Gn is differentiable at z, cn,σ is
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uniquely determined and is denoted by cn,σz . We define the vector field
b : IR2nd → IR2nd by

b(z) = −n(J∇z1H
n, · · · , J∇znHn).

where we recall that J is the (2d)× (2d) symplectic matrix defined by

J =
(

0 −Id

Id 0

)
.

At the points of differentiability of Hn we have

b(z) = −
(
J(z1 − cn,σz

1 ), · · · , J(zn − cn,σz
n )

)
.

We have the following proposition whose first parts (i) and (ii), follow di-
rectly from section 6 of Ambrosio’s theory [1]. Its last part, (iii), is then a
direct consequence of (i) and (ii).

Proposition 1. Let T > 0 be a real number. Then there exists a flow Φn :
[0,+∞)× IR2nd → IR2nd satisfying the following condition:

(i) Φn(t, ·)#L2nd = L2nd for t ∈ [0, T ].
(ii) There exists a set Nn ⊂ IR2nd satisfying L2nd[Nn] = 0 such that

for z ∈ IR2nd \ Nn, Φn(·, z) is an absolutely continuous path and Φn(t, z) =
z +

∫ t

0
b(Φn(s, z)))ds for every t ∈ [0, T ] and TE < R/2, where E is the

constant defined in (3).
(iii) For z ∈ IR2nd \ Nn, Hn(Φn(t, z)) = Hn(z).

As a consequence, we have for every z ∈ IR2nd \ Nn and L1–almost every
t ∈ (0, T ) {

Φ̇n(t, z) = b(Φn(t, z))
Φn(0, z) = z. .

(39)

In other words, Φn is the flow for the Hamiltonian nHn. The theory in [1]
does not apply directly to b since we have b ∈ L∞loc(IR

2nd)2nd instead of
b ∈ L∞(IR2nd)2nd. To obtain proposition 1 from the theory in [1], we use a
cutoff function and approximate Hn by

Hn
r (z) =

n∑
i=1

lr(|zi|2)
2n

+
|c|2

2n
−Gn(z),

where lr(t) = rl(t/r) and l ∈ C∞(IR) is such that |l(t)| ≤ 2, 0 ≤ l′(t) ≤ 2
and

l(t) =

{
t for |t| ≤ 1
0 for |t| ≥ 2.

(40)

The theory in [1] applies to br(z) = −n(J∇z1H
n
r , · · · , J∇znHn

r ) to pro-
vide a flow Φn

r , for the Hamiltonian Hn
r . One can readily check that the

arguments which led to (45) apply to br and yield that

|Φn
r,i(t, z)| ≤ |zi|+ Et. (41)
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Here, we have written

Φn(t, z) = (Φn
1 (t, z), · · · , Φn

n(t, z)),

Φn
r (t, z) = (Φn

r,1(t, z), · · · , Φn
r,n(t, z)).

Observe that br coincides with b on {z ∈ R2nD : |z1|2, · · · , |zn|2 < r}.
This, together with (41), yields that if r is large enough so that TE <
r/2, then when |zi| < r/2, we have that Φn

r (t, z) = Φn(t, z). Letting r
tend to +∞ we obtain the proposition. We have used (39) to obtain that
dHn(Φn(t, z))/dt = 0 for L1-almost every t ∈ [0, T ] which gave (iii).

Let Ωn be the set of ω ∈ Ω such that ξn(ω) 6∈ Nn, where

ξn = ξ1 × · · · × ξn.

We use (C2) and the fact that µo << L2d to obtain that (ξn)#IP = µo ×
· · · × µo << L2nd. Since L2nd[Nn] = 0 we conclude that IP [Ωn] = 1. Set

Ωo = ∩∞n=1Ωn.

We also define Ω′ to be the set of ω ∈ Ωo such that {µn,ω
o }∞n=1 converges to

µo in (P2(IR2d),W2) and

1
n

n∑
i=1

p(ξi(ω)) →
∫

IR2d

p(z)dµo(z) (42)

for p : IR2d → IR such that

p(z) ≡ |z| or p(z) ≡ |z|2 or p(z) ≡ ζ(|z|2).

By (C2) and the Strong Law of Large Numbers,

IP [Ω′] = 1. (43)

For each ω ∈ Ω′ we set

µn,ω
t =

1
n

n∑
i=1

δΦn
i (t,ξn(ω)). (44)

Remark 3 ( Properties of Φn and µn,ω
t ).

(i) If z 6∈ Nn then
|Φn

i (t, z)| ≤ |zi|+ Et, (45)

where E is the constant defined in (3).
(ii) If ω ∈ Ωo and 0 ≤ s < t ≤ T , then

W2(µ
n,ω
t , µn,ω

s ) ≤ (t− s)a(ω) (46)

where a(ω) = supn≥1 4(W 2
2 (µn,ω

o , δ0)+ (T +1)2E2)1/2. We use (37) and the
fact that by the triangle inequality

W2(µn,ω
o , δ0) ≤ W2(µn,ω

o , µo) + W2(µo, δ0)

to obtain that a(ω) < +∞.
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Proof. Using (39) we obtain that for each i = 1, · · · , n

∂t|Φn
i | =

〈
Φn

i

|Φn
i |

,−J(Φn
i − cσΦn

i )
〉

=
〈

Φn
i

|Φn
i |

, JcσΦn

i

〉
≤ E,

which proves (45). We define Vt : IR2d → IR2d, a time dependent Borel
velocity field on the support of µn,ω

t , by

Vt(Φn
i (t, ω)) = bi

(
Φn(t, ξn(ω))

)
= −J

(
Φn

i (t, ξn(ω))− c
σΦn(t,ξn(ω))
i

)
Using (45), we conclude that

||V ||2L2(µn,ω
t ) =

∫
IR2d

|Vt|2dµn,ω
t =

1
n

n∑
i=1

|Φn
i (t, ξn(ω))− c

σΦn(t,ξn(ω))
i |2

≤ 8
n

n∑
i=1

(|ξi(ω)|2 + (T + 1)2E2

≤ 8(W 2
2 (µn,ω

o , δ0) + (T + 1)2E2)

≤ a2(ω).

(47)

By (39), and the definition of µn,ω
t , we have

d

dt
µn,ω

t +∇ · (µn,ω
t Vt) = 0 (48)

in the distributional sense on IR2d. Using theorem 8.3.1 in [2] and combining
(47), (48), we obtain for 0 ≤ s < t ≤ T that

W2(µ
n,ω
t , µn,ω

s ) ≤
∫ t

s

||Vl||L2(µn,ω
l )dl ≤ (t− s)a(ω),

which proves (ii). ut

Lemma 3. For each ω ∈ Ω′ (Ω′ being defined right before (42)), there exists
a collection {µω

t }t∈[0,T ],ω∈Ω′ and a subsequence {µnk,ω
t }∞k=1 of {µn,ω

t }∞n=1

(depending on ω but independent of t) such that
(i)

lim
k→+∞

W2(µ
nk,ω
t , µω

t ) = 0. (49)

(ii) We have µω
o = µo and for s, t ∈ [0, T ],

W2(µω
t , µω

s ) ≤ |t− s|a(ω).
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Proof. First, by (37), (i) holds for t = 0 and so, µω
o = µo for IP -almost

every ω ∈ Ω which proves the first statement in (ii). Let ω ∈ Ω′. We use
(45) and the convex increasing function in (36) to conclude that∫

R2d

ζ(|z|2/4)dµn,ω
t (z) =

1
n

n∑
i=1

ζ(|φn
i (t, ξn(ω))|2/4)

≤ 1
n

n∑
i=1

ζ
(
(|ξi(ω)|+ ET )2/4

)
≤ 1

n

n∑
i=1

ζ
(
(|ξi(ω)|2 + E2T 2)/2

)
(50)

≤ 1
2n

n∑
i=1

ζ(|ξi(ω)|2) + ζ(T 2E2)

≤ 1
2
aζ(ω) ≤ aζ(ω).

Above, we have used the convexity and the monotonicity of ζ, and have set

aζ(ω) = sup
n≥1

( 1
n

n∑
i=1

ζ(|ξi(ω)|2) + ζ(T 2E2)
)
.

Since ω ∈ Ω′, we have that aζ(ω) is finite. Let

K(ω) = {µ ∈ P2(IR2d) :
∫

IR2d

ζ(|z|2/4)dµ(z) ≤ a2
ζ(ω)}.

Then K(ω) is a compact subset of (P2(IR2d),W2) Indeed, (50) and the
Banach-Alaoglu theorem ensures that every sequence of P2(IR2d) admits
a narrowly convergent subsequence, whose second moments converge to the
second moments of its limit. By (50), t → µn,ω

t is a path in K(ω) and remark
3 (ii) gives that the collection of the paths is uniformly Lipschitz. Conse-
quently, there exists a subsequence {µnk,ω

t }∞k=1 of {µn,ω
t }∞n=1 (depending on

ω but independent of t) such that (49) holds. This proves (i). Now, (ii) is a
direct consequence of (i) and (46). ut

Suppose in the remaining of this section that {νn}∞n=1 converges to ν in the
sense of the Wasserstein distance, where we recall that

νn = 1/n
n∑

i=1

δcn
i
.

Define the Hamiltonian H : P2(IR2d) → IR by

H[µ] = 1/2W 2
2 (µ, ν).

We next obtain a transport equation without imposing a severe restriction
on µo.
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Theorem 3 (Transport equation for µω
t ). Assume that (C1) and (C2)

hold. Let {µω
t : t ∈ [0, T ], ω ∈ Ω′} be the collection of probability measures

of Lemma 3 and suppose that ν vanishes on (2d− 1)–rectifiable sets so that
Γo(µω

t , ν) contains only one element (see [5] or [18] ). Then, there exists a
collection {γω

t : t ∈ [0, T ], ω ∈ Ω′} of probability measures on IR2d × IR2d

which satisfies the following:
(i) γω

t has µω
t and ν as first and second marginals and its support is cyclically

monotone.
(ii) recalling that z = (x, v) and c = (a, b), we have for g ∈ C1

c (IR2d),

d

dt

∫
IR2d

gdµω
t =

∫
IR2d×IR2d

(
〈∇xg(z); v − b〉 − 〈∇vg(z);x− a〉

)
dγω

t (z; c),

in the sense of distributions on (0, T ).
(iii) We have µω

o = µo and for s, t ∈ [0, T ],

W2(µω
t , µω

s ) ≤ |t− s|a(ω).

(iv) We have H[µω
t ] = H[µo] for all t ∈ [0, T ].

Proof. Lemma 3 and the fact that ω ∈ Ω′ give (iii).
For ω ∈ Ω′, we define a probability measure γn,ω

t on IR2d × IR2d which
has µn,ω

t and νn as its marginals and whose support is cyclically monotone.
Since ω ∈ Ω′, Hn is differentiable at ξn(ω) = (ξ1(ω), · · · , ξn(ω)) and so γn,ω

t

is uniquely determined for L1–almost every t ∈ (0, T ). We have

∫
IR2d×IR2d

Fdγn,ω
t =

1
n

n∑
i=1

F
(
Φn

i (t, ξn(ω)), cσΦn(t,ξn(ω))
i

)
. (51)

We use (48) to obtain that, for g ∈ C1
c (IR2d),

d

dt

∫
IR2d

gdµn,ω
t =

∫
IR2d

〈∇g(z);Vt(z)〉dµn,ω
t (z)

=
1
n

n∑
i=1

〈
∇g

(
Φn

i (t, ξn(ω))
)
;Vt

(
Φn

i (t, ξn(ω))
)〉

= − 1
n

n∑
i=1

〈
∇g

(
Φn

i (t, ξn(ω))
)
; J

(
Φn

i (t, ξn(ω))− c
σΦn(t,ξn(ω))
i

)〉
=

∫
IR2d×IR2d

(
〈∇xg(z); v − b〉 − 〈∇vg(z);x− a〉

)
dγn,ω

t .

(52)

Lemma 3 ensures existence of a subsequence {µnk,ω
t }∞k=1 of {µn,ω

t }∞n=1 which
converges to µω

t in the W2 metric. Since {νnk}∞k=1 converges to ν in the
W2 metric, we conclude that {γnk,ω}∞k=1 converges narrowly to the unique
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element of γω
t ∈ Γo(µω

t , ν). Also, the second moments of {γnk,ω}∞k=1 converge
to the second moments of γω

t . This, together with (52), yields (i) and (ii).

2H[µω
t ] = W 2

2 (µω
t , ν) = lim

k→+∞
W 2

2 (µnk,ω
t , νnk)

= 2 lim
k→+∞

Hnk [Φnk(t, ξnk(ω)] = 2 lim
k→+∞

Hnk [ξnk(ω)] (53)

= lim
k→+∞

W 2
2 (µnk,ω

o , νnk) = W 2
2 (µω

o , ν) = 2H[µo].

We have used proposition 1 to obtain the second inequality in (53). ut
The second main theorem of this section states a transport equation for

the measures {µω
t }. It asserts that these measures are absolutely continuous

with respect to Lebesgue measure on IR2d. In particular, when d = 1, it
proves that the empirical measures in (44) converge to absolutely continuous
measures which satisfy the semigeostrophic system.

Theorem 4 (Transport equation with absolutely continuous mea-
sures). Assume that (H1) and (H2) hold. Let {µω

t }t∈[0,T ],ω∈Ω′ be the col-
lection of probability measures of Lemma 3, obtained as points of accumu-
lation for the W2-distance, of the empirical measures in (44). Suppose that
{νn}∞n=1 = {1/n

∑n
i=1 δi

c}∞n=1 converges in the metric W2 to a measure ν

whose support is compact. Then there exists a IP -measurable set Ω
′′ ⊂ Ω′

such that IP [Ω
′′
] = 1 and the following hold for ω ∈ Ω

′′
:

(i) (absolute continuity) µω
t << L2d and there exists convex, uniformly

Lipschitz functions φω
t : IR2d → IR such that (∇φω

t )#µω
t = ν .

(ii) (transport equation)

d

dt
µω

t + divx

(
(v −∇vφω

t )µω
t

)
= divv

(
(x−∇xφω

t )µω
t

)
in the sense of distributions.
(iii) µω

0 = µo and, for all s, t ∈ [0, T ],

W2(µω
t , µω

s ) ≤ |t− s|a(ω).

(iv) (conservation of the Hamiltonian) We have H[µω
t ] = H[µo] for

t ∈ [0, T ].

Proof. As in the proof of theorem 3, there exists a subsequence {µnk,ω
t }∞k=1

of {µn,ω
t }∞n=1 which converges to µω

t in the W2 metric. Lemma 3, and the
fact that ω ∈ Ω′, give (iii).

For ω ∈ Ω, n an integer and t ∈ [0, T ], Φn,ω
t : IR2nd → IR2nd preserves

the L2nd Lebesgue measure. By remark 3, there exists a constant R1 > 1/2
such that ∣∣∣(Φn,ω

t (z)
)

i

∣∣∣ ≤ R1 z1, · · · , zn ∈ BRo
.

By theorem 2 for p ∈ (0, 1) and A ⊂ IR2d a Borel set such that 2Co|QR1 ||A|p <
1, we have

IP{ω ∈ Ω : µω
t [A] > p} = 0
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for each t ∈ [0, T ]. We set C = 2Co|QR1 | and use theorem 2 to obtain the
existence of a IP -measurable set Ω

′′

t ⊂ Ω′ such that IP [Ω
′′

t ] = 1 and

µω
t [A] ≤ ln(2C)

− ln |A|
(54)

for all ω ∈ Ω
′′

t , all A ⊂ IR2d such that 2C|A| < 1 and all t ∈ [0, T ] ∩ Q. In
fact these assertions hold for all t ∈ [0, T ]. We set

Ω
′′

= ∩t∈[0,T ]∩QΩ
′′

t

and obtain that IP [Ω
′′
] = 1. Recall that (iii) gives us that the path t → µω

t

is a Lipschitz path. We use this, together with the fact that (54) holds for
open sets and t rational, to extend (54) to all t ∈ [0, T ] all ω ∈ Ω

′′
and all

open sets A ⊂ IR2d such that 2C|A| < 1. Consequently, we have proven that
µω

t << L2d for all t ∈ [0, T ] all ω ∈ Ω
′′
. The Monge-Kantorovich theory

ensures that Γo(µω
t , ν) has exactly one element (see [5] or [18] ) and so, the

sequence {γnk,ω}∞k=1 of theorem 3 converges narrowly to the unique element
γω

t ∈ Γo(µω
t , ν). Also, we have existence of a convex function φω

t : IR2d → IR
such that

∂φω
t ⊂ IR2d × sptν, (∇φω

t )#µω
t = ν, γω

t = (id×∇φω
t )#µω

t .

We have completed the proof of (i). These, together with (51 ) yields (ii).
The proof of (iv) is similar to that of theorem 3 (iv). ut

Remark 4. (i) When d = 1 and ν = χQL2 for Q ⊂ IR2, then the transport
equation in theorem 4 (ii) is nothing but the semigeostrophic equations.

(ii) As a corollary of theorem 4, we have the following: assume that µo is
a probability density on IR2, of compact support, with an L∞ density. Let
µn

o = 1/n
∑n

i=1 δ(xn
i (0),vn

i (0)) be a sequence of discrete measures converging
to µo in the W2-distance. Fix T > 0 and let t → (xn

i (t), vn
i (t)) be a solu-

tion in [0, T ] of the differential equation in (2) with (xn
i (0), vn

i (0)) as initial
values. Set

µn
t = 1/n

n∑
i=1

δ(xn
i (t),vn

i (t)).

Then, we can always choose the initial values (xn
i (0), vn

i (0)) appropriately
so that

- (2) has a solution.
- There exists an increasing sequence {nk}∞k=1 such that for t ∈ [0, T ],

{µnk
t } tends to µt as k tends to +∞.
- µt << L2 and satisfies the semigeostrophic system.

Corollary 1 (Vlasov-Monge-Ampère system). Assume that (H1) and
(H2) hold and that ν = (χQ1Ld) × δ0, where Q1 = (−1/2, 1/2)d. Let µω

t =
ftL2d, let φω

t be as in Theorem 4 and define ρt(x) =
∫

IRd ft(x, v)dv. Then,
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There exists Φt ≡ Φρt
such that (id − ∇xΦρt

)#ρtHd = χQ1Hd, |x|2/2 −
Φρt

(x) is a convex function in the x variables and{
∂tf(t, x, v) + divx(vf(t, x, v)) = divv(f(t, x, v)(∇xΦρt(x))

det
(
Id −∇2

xxΦρt(x)
)

= ρt(x).
(55)

Proof. Let ω ∈ Ω
′′
. As argued in (14), there exists a convex function

ϕω
t : IRd → IR such that φω

t (x, v) = ϕ(x) and (∇ϕ)#ρtLd = χQ1Ld. We use
theorem 4 (ii) to conclude that (55) holds. ut
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