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On the Envelopes’ of Fifiictibns ' Depénding
on Singular Values of Matrices. .

G. BUTTAZZO - B."DACOROGNA - W. GANGBO -

Sunto. - Si considerano funzioni della forma f(z) = = g(A(2)) ove A(z)¢ il wetto-
7 (11(2),A3(2), ..., A, (), €1 A(2), 8omo i valori singolari diz, ciol gli au-
tovalori della matrice. simmetrica. positiva (z27)'/% 8i studiano le pro-
prietd di convessita, uohsgﬁ&u@. ﬂgge&w«& e convessitd di rango
uno per tali ?aﬁoaﬂ e per i loro involucri convesst, policonvessi, quasi-
convessi, e convessi di Tango uno. ) 5

v
| e

1. - —:_..‘..,,.2_.:.@?:. 7

Let 2 LR (te set of 7 %  real matrices). As well known (see
for instance Ciarlet [C]) one can: decompose 2z as

(LLyvia 25,4 HME e are g AV

where U,Ve Re*% E.m oﬁromc:& an:omm om VUt = S\; |c usa -
Aisa .”_Emoaw_ Ewﬁ.ﬁ with wow_ﬁa.m entries A,,...,A, that from now
on we always order’ increasingly, ie. 054, S.:., S2,. These A; are
called mum 3:%«5.._. values of z.

ﬂﬁ aim of this article is to' study functions of the form

gs Iy 1N RETTRISR, ¢ L %:

In many problems of the calculus an qmﬁ»ﬂoam w:a om :ou_EoE. m_mm-
ticity (where A,,.. »a ‘are called vﬁuﬂw& stretches) functions de-
pending on a matrix z'e R™*"i 5 nwaa depend. o:-w on Ay,...,A,. Note
that for QBEEm

_N_nl M ne My

i.j=1 i=1 -

n
| det 2| HH.—»_..
i=1
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For more details about the importance of functions of the form (1.2)
we refer for instance to Ball[B1],[B2],[B3], Ciarlet[C], Da-
corogna [D].

In this paper we focus our attention on how to compute the dif-
ferent envelopes of a given function f of the form (1.2) in terms of g.
In the caleulus of variations many notions of convexity are involved;
the usual one as well as polyconvexity, quasiconvexity, and rank one
convexity, which are defined in Section 2. In many cases the given
function f does not satisfy any of these convexity assumptions, and
we are led to compute Cf, Pf, Qf, Rf, which are respectively the
greatest convex, polyeonvex, quasiconvex, rank one convex func-
tion less than or equal to f (for more details and references see
Dacorogna [D]).

Our first result (Theorem 3.1) is that if fis of the form (1.2) then
so are Cf, Pf, Qf. Rf, ie. they depend only on singular values, We
then compute Cf in terms of g (Theorem 3.2), and we show thatif g is
the greatest function less than or equal to g which is convex and in-
creasing in each variable, then

a.3) Cf(2)=g(A1y...r An)-

In the case n = 2 we also give (Proposition 3.3) a way to compute Pf
in terms of g. Finally we study examples (Theorems 3.5 and 3.6)
where one can explicitely compute Cf, Pf, Qf, Rf. Namely setting
for ze R**"

8(z) = :»_.u | det 2|,

i=1

AT+...+ADVP if pell, + o[,

M.HA&v" 2. = max A; ﬂ.ﬁ"+8‘
T oi<isn

we show that
(i) in the case f(z) =g(s(2))
Pf(z) =Qf(z) =Rf(z) = meﬁv >(Cf(z)=infg;

(ii) in the case f(z) HQQ_..:.»:LVFP when g does not de-
pend on the largest singular value A,

Cf(z) = PAz) = Qf(z) = Rf(z) =inf g;
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(iii) in the case f(z)=g(S,(z)) where for a suitable ¢ =1

1+¢t7 ift>0,

QSHT if t=0,

(more general g are allowed, see Section 3) we have when p =1
Cf(z) = Pf(2) = Qf(2) = Rf(z) = §(8:(2)) ,
while if p > 1 we have in general
Pf(z) > Cf(z).

The case p = ¢ =2 has been treated by Kohn and Strang [KoS]
while studying problems of optimal design. They have shown fur-
ther that in fact Pf= Qf= Rf.

2. — Notation and preliminary results.

In the following we denote by z a generic # X n real matrix. It is
well known (see for instance Ciarlet [C]) that given z € R**™ there
exist two orthogonal matrices U,V < R"*" and a positive diagonal
matrix

A= QFNAvrw. ....MT;v
such that
z2=UAV.

The nonnegative numbers A;,...,A, are called sungular values of z
and can also be seen as the eigenvalues of the positive symmetric
matrix (zz%)"2. We shall denote by 2,(2), ..., A, (2) the singular values
of z, with

0<2,(r)<...<2,(2),
by A(z) the n-uple (A;(2),...,A,(2)), and by A(z) the matrix
A(z) = diag (1,(2), ...,2,(2)) .
Moreover, we indicate by @ the subset of R"
Q={(A1,-..,2) eR™ 02, S ... €2,}.
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THEOREM 2.6. — We have:
(i) in the case (23)
f polyconvex <> f quasiconvex <>f rank one convex <
<> g convex and increasing;
(i) in the case (2.4)
f convex <> f polyconvex <>f quasiconvex <>
< f rank one convexr <> g convex and increasing,;
(iii) in the case (2.5)
f polyconvex <>f quasiconvex <>f rank one convex <>
< g convex and increasing;
(iv) in the case (2.6)

f convex <> f polyconvex <>f quasiconvexr <>
<> f rank one convexr<>g constant.

PRroOF. — For the proof of (i), (ii), (iii) it is enough to repeat with
slight modifications the proof of Dacorogna [D], Theorem 1.10 page

133, cases i), iii), iv). o
Let us prove (iv). It is enough to prove the implication f rank one
convex=>g constant. Let 0<2,<...<A,_; be fixed, and set

A= EAN-.....Nalw.C.NSIHV.
B= QWNNANH...J»aln.N.»:|:»aluv.
C= waﬂﬂv:...JN:IN.NHI—.NaILw

we have
c=24*E ad rak@a-B<1.
Then, by the rank one convexity of f,
flA) + f(B) _

aw-.....waluv".\.ﬁsm 2

QAO.NH-..JNSINV +QA>:....¥.—IHV
2 .

Hence
QAy:...‘NaluvMQAO.N—.....Nalmv

which, taking into account Proposition 2.6, proves that g is con-
stant. ®
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ExamMPLE 2.7. — One should not infer from Theorem 2.6 that for
functions of the type (2.1) polyconvexity and rank one are equiva-
lent. Indeed Aubert[A] has given the following example of a rank
one convex function which is not polyconvex:

gOLAD = 204 +2D + 22328 - Zata, + 203D,

Finally, we end up with the following lemmas which will be used
in the proofs of the next section.

LEMMA 28. — For every A,Be R**" and every se {1,...,n} we
have

adj, (AB) = adj, A adj, B .

ProOF OF LEMMA 2.8. — We recall (see Dacorogna [D], page 187)
that for every z e R**" and every 1 < s < n the adjugate matrix of

order 8 is the matrix adj,z e R°*° where o= AMV.

z z

Wi s

(adj, 2)i; = (—1)*det| : N

N-.-.w.- ot Na.-.m-

and (iy,...,%), (J1,...,J,) are the s-uples corresponding to i and j by
the unique bijection

ﬁ Tmﬁi lm.u?mz.“_mfAAsmi

which respects the order on I} given by
a< E o> u k

being k the largest integer such that a # 8;.
Therefore, denoting by Ay, the matrix in R***

A»A.&&&u.vvnh"kﬂmu&u AQ.R"H‘...«MV
and by Ay, the column vector

Ay =4 (2=1,...,8,k=1,...,n),
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we have

(- 1)**¥(adj, AB);; = det (AB)yiyg(») =

Q@ﬂ AMN@—»&.&&&- aoa sMw?&.kﬁeﬁvwv =

M .mr_u._ 9 8 ° .WF.‘..QOG Ak»i.—.;—‘ e lﬁvﬁ.vw.v 3
kyy ook

On the other hand
(— 1)¥*3(adj, 4 adj, By = 2~ 1)**/(adt, A)i(adlj, B); =

MQ@H b&&&qv det N&l&.& = M det Ak#ox&&l .wﬂxlec.vv .
M det AM&UN#.».—;&&JZ oe- .Mwﬂ-ﬁkﬁ.&&#v =
2 2 Bpj e Br et (Ao, Agin) =

. -...'B, . QQ&?&&&J. ....x&.&s.wi.v

Tads
and the proof is then concluded. =
LEMMA 2.9. — For every ze R**™ and every 1 € Q we have
sup {(z,w): we R**™ Aw) =1} = (M(2),1).

PROOF. — See Von Neumann [VN] and Mirsky[M]. ®

3. — Envelopes.

Given a function f: R**"— R we denote by Cf, Pf, Qf, Rf re-
spectively the convex, polyconvex, quasiconvex, rank one convex
envelopes of f. Moreover, given a function g on @ we extend g to the
whole R by setting ¢ = + © on R*\ Q.

THEOREM 3.1. — Let f be of the form (2.1); then Cf(2), Pf(z), Qf(2)
Rf(z) are still of the form (2.1), ie they depend only on
N_ANV‘ ...sMHANv.

PRrROOF. — Let 2,2’ € R"*" be such that A(z) =A(z')=A and let
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U,V,U',V' € R"*" be orthogonal matrices such that
z=UAV 2'=U'AV.
Of course, it is enough to show that

Cfz)<Cf(z), PfZ')<Pflz), Qf(z)<Qf(2),

being the opposite inequalities analogous. We use the following
characterizations (see Dacorogna[D], Theorem 1.1 page 201)

Rf(z') < Rf(2),

iel iel iel

oxsuiMién 820,28 =1, 2 4A; uu_.

iauiMi&p £:20, 2 t:=1, 2, t; adj, 4;=adj, 2, mur....g_.

iel iel iel

Qf(z) = inf

H . H.S .:
— _.\.\Aib&avv%.ﬁmﬁ Gﬁ_:,

where I varies over w: finite sets (actually 1 + n2 elements suffice in
Cfiz)and 1 + wMAMV elements suffice in Pf(z)) and Y in Qf(2) is any
bounded open subset of R™ (actually the infimum in Qf(z) does not

depend on Y).

Concerning Rf(z), setting for every k<N and Ae R**" by
induction

Ry f(A) = f(4)
Ry 1 fA) =inf {tR; f(A}) + (1 — 1) Ry f(A,):
:1e[0,1],t4; + (1 —t) A, = A, rank(4, — 4,) <1}
we have (see Dacorogna [D), Remark v) page 202)
Rf(z)= lim R, f(2).

k— 4+ o

PROOF FOR Cf. — By the characterization of Cf(z) for every ¢ > 0
there exist £; >0 and A; such that

2t=1, DtAi=z, XtfA)<CA@) +e.

ief iel ief
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Taking B; =U'U*A; V'V’ we get A(B;) =A(4;) and

LB, =U'U'2VIV =UAV =2'

ial

so that

Cfz') < Dt f(B) = 2t FLA) < Cf(z) +e.

iel ial

Since ¢ is arbitrary, we obtain Cfiz’) = CA(2).

ProOF FOR Pf. — By the characterization of PA(z) for every ¢ > 0
there exist ¢; =0 and A; such that

D=1, Dtadi,Ai=adj,z s=1,..,n, 2t fA)<Pfz)+e.

ial tel iel
Taking again B;=U'U'A;V'V' we get A(B;) =A(4;) and, by Lem-
ma 2.8

adj, B; = adj, (U’ U") adj, 4; adj, V*'V") s8=1,...,n.

Then
2.t adi, B; = adj, (U" U 21, ad, Asady (V'V) =

adj, (U’ U adj, z U&-A«ld\.v = adj, 2’
and so

Pfz') < Dt f(B) = 2t flA) S Pf(z) +e.

tel ial
Since ¢ is arbitrary, we obtain Pf(z’) < Pf(z).
PROOF FOR Qf. — Let Y be the unit ball of B*; by the characteriza-

tion of Qfiz) for every ¢ >0 there exists ¢eWy "(Y;R™ such
that

L .‘..x@ + D¢(x))dx < Qf(z) + €.
Y

meas Y
Taking ((x) = U’ U'$(V*V'z) we have ¢ e Wy (Y;R™) and
DYx) =0 U'DKV* V) VIV
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so that

Qf(z') <

1 ._. f@' + D)) do =

meas Y >

meas Y

1 béd;i&%ﬁ%iﬁ%n
Y

1 .‘ fz + DYVt V') dis =

measY -

1
measY

.‘. fz+Dg(x))dr<Qf(2) +¢.
Y

Hence Qf(z') < Qf(z), since ¢ is arbitrary.
PROOF FOR Rf — We have
R, f(A) =Ry f(B) whenever A(A) =A(B).
Assume by induction that
R, f(A)=R, f(B) whenever A(4) =A(B)

and let £ > 0 and A,B € R*** with A(4) = A(B); then for suitable or-
thogonal matrices «, 8 we have B = «AB. By definition of B, , , f(4)
there exist ¢t < [0,1] and A,,A;, such that

A, +(1-1HA,=A,
rank (4, - A4;) <1,
tR, f(A) + (1 - )R, fAp) S By 1 fA) + ¢
Taking B; =aA;8 (i=1,2) we obtain A(B)) = A(4,) and
iBi+(1—t)By=altA; + (1 —-t)A,)B=aAB=B,
rank (B, — B,) =rank (a(4, — 4,)8) <1

80 that
Bys) fIB) StR, f(By) + (1 —t) Ry f(By) =

tR, f(A) + (1 — O Ry f(Ap) S By fA) + 6.
Since ¢ is arbitrary, we get R, ,, f(B) < R, ,, f(A) and, being the op-
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posite inequality similar, Ry . f(B) =Ry, f(A). Then, by induc-

tion, we obtained i
R, f(A)=R, f(B) whenever ke N and MA) =x(B)

‘and so

Rf(z)= lim R, f(z)= lim R, f(z')=Rf(z'). ®

k—+ o k—+

For the convex envelope CF we actually have the following
representation.

THEOREM 3.2. — If f is given by (2.1), then
Cf(2)=(g* + x@* (X(2))

where g* denotes the usual Fenchel duality transform of g and xq
stands for the indicator function of Q

[ fzeQ,
xoﬁav|*+8 @samo.

In particular
Cftz) = g(A(2))

where § is the greatest function less than or equal to g on Q which i3
convez, Ls.c, and increasing in each variable.

PRrOOF. — For every z* € R**™ we have, taking into account Lem-
ma 2.9

) — . * b=
f @Y= méxu z*) —g2)} = sup »w_wwyzu 2*) — g} =

sup {(A, Az%) — g} =g* (Az*) .
e

Therefore, for every ze R**", by using Lemma 2.9 again,

Cfz)=f**(z)=sup {(z,2*)—g* Mz*)}= sup sup. {(z,2*)—g*N)}=
sup {(A,A(2)) —g* (N} = (g* + x)* (A(2)).

reQ

Moreover, by Theorem 2.2 it is obvious that Cf(z) = §(A(2)), and thus
the proof is concluded. @
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In the case » = 2 it is possible to give a characterization of the
polyconvex envelope Pf of functions of the form (2.1). Indeed the fol-
lowing result holds.

PROPOSITION 3.3. — Let n = 2 and let f be of the form (2.1). Then
we have

@8.1)

where
11{A) =8up {A AT+ A A F + A 8% —
v2(A) =sup {A2A% + 4, |AF -

Pf(z) =sup {y1(A(2)),7:(A(z))} Vze R™*"

H (At
Ag8¥| — Hp (At

A2,8%):8*20,A*e Q},
AE,6%): 8%20,1* e Q),
Hy(A%,22,8%) =sup{a; A} + a;A% + 0,0,8* — g(a;,00): a € Q},

Hy(At,22,8%) =sup{az A + a; |Af — a28*| —g(a1,02): a € Q}.

PROOF. — By Dacorogna [D], Theorem 1.1 page 201, we have
Pf(z) =sup {(z,2*) + 6* det z — fF(2*,6%): 6*e R,2*e R**"}
where
fP(z*,6% = sup {{w,2*) + &* det w — f(w): we R"*"}.
By using Lemma 2.9 it is not difficult to obtain
fP(z* ¢ = wmw.“a;%ud + ax2g(2*) + aya, |8*] — glay,ay)}
if 8¥*detz*=0,
.x:u_.,m.vummw {az22(z*) + a, | A1(z%) = a2 |8*] | — g(ay, a2}
if e*detz*<0
and, after some calculations, formula (3.1). ®

REMARK 3.4. — In particular, when g depends only on A, we have,
for &*> 0,

Hy(A1,22,6%) =sup {t(AF + 1)) +t26* —g(1)},
20

Hy(Af,02,6%) =sup {tAf +t|A} —t8*| — g(1)}.
£20

Let us consider now some particular cases of envelopes.

THOEREM 3.6. — The following results hold:
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@) in the case f@ = g(8(2)) we have
Pf(z) =Qf(2) = Rf(2) =§(6()
whereas Cf(z) = infg;
(ii) in the case XNVH@C;QV.....»7_@5 we have
Cf(z) =Pf(2) = Qf(2) =Rf(2) = infg.
ProoF. — In the case @i the equality NR&H@\QVHEANVH
§(8(z)) can be proved as in Dacorogna (D], Theorem 1.3 page 217.

The equality Cf(z) = infg follows from Theorem 32. Indeed, for
every z* € R**" it is

.\..vANiV = mﬁﬁﬁAN‘N!v - QﬁwAvaw = N?-ns . EHQ
go that for every Z€ R
%uvummi?u.v — f*(z"}=infg.

Let us prove (i), It is enough to show that Rf(z) < inf g for every
2 e R***. By Theorem 3.1 there exists 2 function y:Q—>R such
that

m&.@vuiy_@v.:..»%uv Yze R**",
and, since Rf<f, we have
3.2) 1»7:..yavm.eg:.:.»alv VreQ.

By Proposition 2.5 the function ¥ is convex and increasing with re-
gpect to Ams and by 32) it is bounded from above for each
(s o< Rus=) fixed. Therefore v is constant with respect t0 Ax and
so, taking into account Theorem 26(iv), v 18 constant on Q- By 32)
we obtain that v = infg. ®

We consider now functions f of the form

3.3 fa)= g(S,(2) Pe€ (1, + ]

where g: R+ — R, satisfies the following conditions:
3.4 g(0) =min {gt): t= 0},

3.5) g is convex on {a, + ol for a suitable a>0,
36) gla) —90) _ g -9©® 5o

o t

ON THE ENVELOPES OF FUNCTIONS DEPENDING ETC. 31

Setting K= (g(a) — g(0) /) it is easy to see that for every t = 0

36 = Kt + g(0) ift<a,
g(t) if t>a;

hence by Theorem 32 we have for every 2€ R**™ and every
pell, + ©]

KS,(2) +9(0) if Sy(2)<a,

Cf(2) = §(S,(2) =
’ r@@ if S,(z)>a.

THEOREM 3.6. — Assume n = 2 and let f be of the form (3.3) with
satisfying (3.4), (85), (3.6). Then !

@) if p=1 we have
Cf(z) =Pf(2) = Qf(z) =Rf(2) = g(T(2)) = Cg(T(2))
@ if pell, + ®] and g is the function

1+t2 ift>0
)=
gt T i £=0

Yze R"*";

we have Cf(z) < Pf(2) for a suitable ze R**".

.mvwoom. — In order to prove (i), taking into account Theorem 3.2,
it is enough to show that

8.7 Rf(2) <§(T(z)) Vze R**™.

w.w Theorem 3.1 we can limit ourselves to matrices z of the form
diag (a, b) with 0 < a < b. Since g(t) =g(T) when T = «, inequality
(8.7) holds trivially for every 2z such that T(z) =« Let now z =
diag (e, b) with a + b<aandlett=(+ b)/a; define

uuﬂo ov =1 a \ab

17\o o 2" t\Vab b

wtl ° (¢t —1)Vab
t\(t-1)Vab b
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It is easy to see that Lt +t=1, z=1,2, + 1325+ 323, and
«Hn_+&uwvm.._..

rank(z; —zs) €1, wwuwﬁn@.l Lt

Therefore

Rf(z) <1, f(z)) + & f(z) + 13 f(29) =

5139; 5 Aai.vn
-0+ -3 .A t TNLQ t

(1-09© +tg( S} =1 - 090 + atb )=

g(0) + K(a + b) =gla+b)

so that (3.7) is proved and the proof of (i) is complete.

Let us prove now (i) in the case p= + ©. Take z = diag(a,a)
with 0<a <1/V/2; by the characterization of Pf given in Proposi-
tion 3.3 and by Remark 3.4 we obtain, taking &* =1 and 2*= (z, %)
with x>0

Hy(z,z,1) =sup {ax+a|z—a| - gla)}.

a>0
When « > x it is

ax +al|z—al —gla)=a®—gla)=—1;

hence
Hy(x,x,1)= sup {2ax— a?—g(a)} =
0sax€2
x2 N
0V sup *mnalwn»liuﬁlml luv -
0<a€x
Therefore

Pf(z) = yz(z) 2 sup{ax +a |z —a| — Hy(w,=, 1} =

z>0

z= V2 2

On the other and, by Theorem 3.2,
Cf(z) =g(A2(2)) =2a
which is strictly less than 2/2a —a® when a<1/ V2.

2 .
sup mglaN|Am| |Hv =2V2a—-a?.

ON THE ENVELOPES OF FUNCTIONS DEPENDING ETC. 33

Let us prove now (ii) in the case 1 <p < + «. By contradiction as-
sume Cf = Pf and let z € R**™ be such that detz = 0 and 0 < §,(2) <
1. By the characterization of Pf used in the proof of Theorem 3.1
there exist t,,...,4,€10,1[ and 2,,...,2,€ R"*" with

k k
M“..nu. Mﬁ.nﬂ.nn,

f=1 i=1

k k
Dtdetz=detz, Dt flz)=Pf).
i=1 i=1

It must be z;, =0 for a suitable %: in fact, otherwise it would
be _

k
§(8,(2)) = Cf(2) = Pf(z) = M £, f(2) = f(z) = g(5,(2))

which is impossible because 0 < S,(z) <1. Then we may assume z, =
0 and z; =0 for :=2,...,k. Since

k k

88) Cf(z) < M_s Cf(z) < M_s flz) = Pf(z) = Cf(2),

we have f(z;) =Cf(z;) for i=1,...,k, that is 9(S,(2) =§(S,(z) for
i=1,...,k, so that

a.@v -W%AN—.vWH <s“N..~a

k
Setting t= M..... we have from (3.8)

i=2

w a
B10)  FS,@)=Cfl)= Qtife) =t 2 F1 +SHa) =

k k 2
t t
1+ 282G {2t 1+ 2 28,
i=e t i=2 t

and, due to the strict convexity of the function x> x?, the last in-
equality is strict whenever the S,(z;) are not all equal. Since g is in-
creasing and convex, again from (3.8) we have

w w §
qum@@m@wiﬂ_@MM“_@@%_.VX Mﬂiﬁ_vugs
so that

k
@11) S5(2) = 21:85,(2)

which implies by (3.9) t<S,(z) <1. By (3.10) and (3.11) we obtain, if
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the S,(z;) are not all equal

28,(2) > t(1 + S5 (2 /1))
that is

28,(z/8) >1+ 83z /t)
which is impossible because S,(z/t)=1. When the S,(z;) are all
equal, being by (3.11) S,(z/t) =S,(2;) for all 1=2,...,k, and be-
ing

k

m?\sn% L M.m&@..vum?\c,

i=2 t
by the strict convexity of the mapping w+> Sf(w) (see Remark 2.3),
we have that all z; are equal to z/t for i=2,...,k. But in this case,
from the equality

k
M t;det z;=det 2z

i=2
we would obtain £ = 1 which is impossible. =

REMARK 3.7. — Note that the proof of Theorem 3.6 (ii) in the case
1<p< + » can be easily extended to the n-dimensional case and to
functions more general than the function g considered here.

REMARK 3.8. — In Kohn and Strang [KoS] the cae p = 2 was con-
sidered; they showed (see also Dacorogna [D], Lemma 2.7 page 283)
that, with the same g of Theorem 3.6 (ii),

1+T2%(2)-28(z) if T(2)=1,
Q@o}&a}&%ﬁ%N%V ms@m%v m:.@ﬁ.
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