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Abstract. We present a method for generating local orthogonal bases on arbitrary partitions
of R from a given local orthogonal shift-invariant basis via what we call a squeeze map. We give
necessary and sufficient conditions for a squeeze map to generate a nonuniform basis that preserves
any smoothness and/or accuracy (polynomial reproduction) of the shift-invariant basis. When the
shift-invariant basis has sufficient smoothness or accuracy, there is a unique squeeze map associated
with a given partition that preserves this property and, in this case, the squeeze map may be
calculated locally in terms of the ratios of adjacent intervals. If both the smoothness and accuracy are
large enough, then the resulting nonuniform space contains the nonuniform spline space characterized
by that smoothness and accuracy.

Our examples include a multiresolution on nonuniform partitions such that each space has a local
orthogonal basis consisting of continuous piecewise quadratic functions. We also construct a family
of smooth, local, orthogonal, piecewise polynomial generators with arbitrary approximation order.
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1. Introduction. Finitely generated shift-invariant (FSI) spaces naturally arise
in several areas of numerical analysis and approximation theory, including the theory
of splines and wavelets. A major advantage of an FSI space is the existence of a
convenient basis generated by a (usually) small number of functions. When the basis is
local and orthogonal the process of finding the orthogonal projection Pf of f ∈ L2(R)
onto the space is local so that changing f on a compact interval affects only Pf on a
slightly larger interval.

In this paper we introduce and investigate a method for adapting local shift-
invariant bases to nonuniform partitions via what we call a squeeze map. When
the shift-invariant basis is orthogonal, the squeeze map may be chosen so that the
nonuniform basis is also orthogonal.

The notion of squeeze maps generalizes ideas introduced in [4], where we gave
examples of local orthogonal piecewise polynomial shift-invariant bases that are easily
adaptable to arbitrary grids in R. The focus of this paper is on characterizing when a
squeeze map generates a nonuniform basis preserving any smoothness and/or accuracy
(polynomial reproduction) of the shift-invariant basis. When the shift-invariant basis
has sufficient smoothness or accuracy, there is a unique squeeze map associated with
a given partition of R that preserves this property and, in this case, the squeeze map
may be calculated locally in terms of the ratios of adjacent intervals. When both
the smoothness and accuracy are large enough, we find that the resulting nonuniform
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space contains the nonuniform spline space characterized by that smoothness and
accuracy.

Two applications that provide motivation for our work are adaptive least squares
and the construction of orthogonal wavelets on semiregular and irregular families of
grids:

(1) Since the bases constructed here are local and orthogonal and depend locally
on the given grid, it is relatively easy to calculate changes in the orthogonal projection
of a given function (onto the span of this basis) resulting from changes in the grid,
making them well suited for adaptive least square problems.

(2) While we do not focus on refinable spaces in this paper, it is the refinable
case that provides the main motivation for our study. We remark that our methods
provide a means to adapt a multiresolution on uniform grids to one on a semiuniform
family of grids (that is, an arbitrary coarse grid that is uniformly subdivided). In
the example in section 6.3, we start with Daubechies’s famous orthogonal scaling
function 2φ. We find that, given a nonuniform grid, there is a unique squeeze map
that preserves the accuracy of the space. In the example in section 6.4, we use ideas
from [5] to construct a multiresolution on an arbitrary nonuniform subdivision. (The
only requirement is that each interval is subdivided into two subintervals.) Each space
has a local orthogonal basis consisting of continuous piecewise quadratic functions.

Finally, in section 7 we construct a family of smooth, local, orthogonal, piecewise
polynomial generators with arbitrary approximation order using techniques developed
in [6]. These generators have fewer components than the corresponding refinable gen-
erators constructed in [6], and so we prefer them when refinability is not required.
We mention that a possible application of this family is to code division multiple ac-
cess (CDMA) technology, where several users share a single channel using orthogonal
decompositions.

1.1. Shift-invariant spaces. We call a compactly supported, finite-length (col-
umn) vector

Φ =



φ1

...
φn


 ∈ L2(R)

n

a generator. Note that when it is clear from the context, we also consider a generator
Φ to be the set of its components; that is, we also consider Φ ⊂ L2(R). When we
refer to the span of Φ we mean the subspace of L2(R) spanned by the components of
Φ.

For a generator Φ, let

B(Φ) := {φi(· − j) | j ∈ Z, i = 1, . . . , n}.

If B(Φ) is an orthogonal set, we say Φ is an orthogonal generator. For a generator Φ,
let

S(Φ) :=



∑
j∈Z

c(j)�Φ(· − j) | c(j) ∈ Rn, j ∈ Z


 .

If V = S(Φ) for some generator Φ, then V is called a finitely generated shift-invariant
(FSI) space.
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1.2. Minimally supported generators. Our procedure for constructing local
bases on nonuniform partitions starts with generators supported on [−1, 1] satisfying
a local linear independence condition on [0, 1]. In particular, for k ≤ n, we say that a
generator

Φ =




φ1

...
φk

φk+1

...
φn




=

(
Φ̄

Φ̆

)

(where Φ̄ consists of the first k elements of Φ and Φ̆ consists of the last n − k) is a
minimally supported k-generator (or just minimally supported) if

(1) supp Φ ⊂ [−1, 1];
(2) supp Φ̆ ⊂ [0, 1];
(3) the collection Φ̆ ∪ Φ̄χ[0,1] ∪ (Φ̄(· − 1))χ[0,1] is linearly independent.

We denote the collection of all minimally supported k-generators with n components
by Gn

k . See section 5 for several illustrative examples of orthogonal minimally sup-
ported generators. The notion of generators minimally supported on [−1, 1] played a
central role in the construction of orthogonal, smooth, piecewise polynomial wavelets
given in [5].

For Φ ∈ Gn
k , we denote the “left” and “right” pieces of Φ̄ by

ΦR := Φ̄χ[0,1] and ΦL := Φ̄χ[−1,0).

Obviously, condition (3) can be rewritten as Φ̆ ∪ ΦR ∪ ΦL(· − 1) is linearly indepen-
dent. If Φ is minimally supported, then it follows from the local linear independence
condition (3) above that B(Φ) is linearly independent; that is, any f ∈ S(Φ) has a
unique representation of the form f =

∑
cjΦ(· − j). In the remainder of this paper,

when there is clearly some underlying minimally supported generator with k and n as
above, then, for any (row or column) vector v of length n, we let v̄ denote the subvec-
tor of the first k components of v and v̆ the subvector of the last n − k components
of v.

Also, for f, g ∈ L2(R)
n
we define 〈f, g〉 := ∫

R
f(x)g(x)�dx ∈ Rn×n, where v�

denotes the transpose of a (column) vector v.

2. Squeeze maps. Let a = (aj)j∈Z be a strictly increasing real-valued sequence
with no accumulation point in R, in which case we call a a knot sequence. Let
Lj := aj+1 − aj denote the length of the jth interval [aj , aj+1] and let τj = τaj be
given by

τj(x) =

{
(x− aj)/Lj−1 for x ≤ aj ,

(x− aj)/Lj for x ≥ aj .
(2.1)

Then τj maps the points aj−1, aj , and aj+1 to −1, 0, and 1, respectively.
Suppose Φ is an orthogonal minimally supported generator. Consider

B0 =
⋃
j∈Z

Φ ◦ τj .
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If Φ is continuous and k = 1 (for example, see the example in section 6.1), then
(because τj is affine on each “overlap” interval [aj , aj+1] and continuous on R) it
follows that B0 is a continuous orthogonal basis for its span.

On the other hand, if Φ ∈ C1(R) and Φ′(0) �= 0 (for example, consider the
continuously differentiable Φ with k = 2 in the example in section 6.2), then the
components of B0 are not in C1(R) for nonuniform a. In particular, Φ̄ ◦ τj is not
differentiable at aj unless Lj−1 = Lj . This leads us to consider a more general
construction in which linear combinations of Φ̄L ◦ τj are pieced together with linear
combinations of Φ̄R ◦ τj via what we call a squeeze map.

More specifically, let A
(j)
L and A

(j)
R be invertible k × k matrices for j ∈ Z and let

Aj : R → Rk×k denote the matrix-valued function on R defined by

Aj = χ[−1,0)A
(j)
L + χ[0,1]A

(j)
R .

Given A and a knot sequence a, we call the sequence of mappings σ = (σj)j∈Z, where
σj : Gn

k → L2(R)
n
is given by

σj(Φ) =

(
AjΦ̄ ◦ τj
Φ̆ ◦ τj

)
,

a squeeze map (on Gn
k ).

As before, we let σ̄j(Φ) denote the vector of the first k components of σj(Φ) and
σ̆j(Φ) the remaining n− k components. Observe that

σ̄j(Φ) =
(
χ[−1,0)A

(j)
L Φ̄ + χ[0,1]A

(j)
R Φ̄

)
◦ τj =

(
A

(j)
L ΦL +A

(j)
R ΦR

)
◦ τj

and suppσ̄j(Φ) ⊂ [aj−1, aj+1], while suppσ̆j(Φ) ⊂ [aj , aj+1].
If σ is a squeeze map on Gn

k and Φ ∈ Gn
k , then we define

Bσ(Φ) :=
⋃
j∈Z

σj(Φ)

and

Sσ(Φ) :=



∑
j∈Z

c(j)�σj(Φ) | c(j) ∈ Rn, j ∈ Z


 .

The minimal support of Φ and the invertibility of A
(j)
L and A

(j)
R imply that Bσ(Φ) is

linearly independent.

If σ is a squeeze map with matrix sequences (A
(j)
L ) and (A

(j)
R ), we define

Rj = Rj(σ) := (A
(j)
L )−1A

(j)
R (j ∈ Z).

We say that two squeeze maps σ and ν on Gn
k are equivalent whenever Sσ(Φ) = Sν(Φ)

for any Φ ∈ Gn
k .

Lemma 2.1. Suppose σ and ν are squeeze maps on Gn
k . Then σ and ν are

equivalent if and only if

Rj(σ) = Rj(ν) (j ∈ Z).(2.2)



SQUEEZABLE BASES 1081

Proof. Suppose (2.2) holds. Then

(
A

(j)
L

)−1

σ̄j(Φ) =
(
ÃL

(j)
)−1

ν̄j(Φ) (j ∈ Z),

where σ has matrix sequences (A
(j)
L ) and (A

(j)
R ) and ν has matrix sequences (ÃL

(j)
)

and (ÃR
(j)
). Since A

(j)
L and ÃL

(j)
are nonsingular the above shows that σ̄j(Φ) and

ν̄j(Φ) (considered as sets) have the same span. By definition σ̆j(Φ) and ν̆j(Φ) have
the same span showing that σj(Φ) and νj(Φ) have the same span, and hence Sσ(Φ) =
Sν(Φ).

On the other hand, if Sσ(Φ) = Sν(Φ), then the local linear independence of Bσ(Φ)
and Bν(Φ) shows that σ̄j(Φ) and ν̄j(Φ) have the same span for each j ∈ Z. Thus,
there must be some nonsingular matrix Wj such that

ν̄j(Φ) = Wj σ̄j(Φ) (j ∈ Z),

which implies that (2.2) holds.
Our motivation for considering squeeze maps is that if Φ is a minimally supported

orthogonal generator, then we can always find a local orthogonal basis for Sσ(Φ) ∩
L2(R). To see this, note that the elements of σ̄j(Φ) are orthogonal to the elements of
σ̄j+1(Φ):

〈σ̄j(Φ), σ̄j+1(Φ)〉 = LjA
(j)
R 〈ΦR,ΦL(· − 1)〉

(
A

(j+1)
L

)�
= 0 (j ∈ Z).

It then follows that σj(Φ) is orthogonal to σj′(Φ) for any j �= j′ ∈ Z. Finally, for
each j ∈ Z, we choose some orthogonal basis for the span of σ̄j(Φ) (for instance, by
applying the Gram–Schmidt process to σ̄j(Φ)). This change of basis corresponds to
constructing a squeeze map ν equivalent to σ such that Bν(Φ) is an orthogonal set
and is equivalent to performing the following matrix factorization: Let BjB

�
j be a

Cholesky factorization of 〈σ̄j , σ̄j〉, that is,

BjB
�
j = 〈σ̄j(Φ), σ̄j(Φ)〉 = Lj−1A

(j)
L 〈ΦL,ΦL〉

(
A

(j)
L

)�
+ LjA

(j)
R 〈ΦR,ΦR〉

(
A

(j)
R

)�
.

(2.3)

Then ν with matrix sequences (B−1
j A

(j)
L ) and (B−1

j A
(j)
R ) is equivalent to σ, and Bν(Φ)

is an orthogonal basis for Sσ(Φ) ∩ L2(R). Thus we have the following lemma.
Lemma 2.2. Suppose Φ is a minimally supported orthogonal generator and σ is

a squeeze map for Φ. Then there is some squeeze map ν equivalent to σ such that
Bν(Φ) is an orthogonal basis for Sσ(Φ) ∩ L2(R).

3. Polynomial reproduction and smoothness. In this section we give neces-
sary and sufficient conditions for a squeeze map σ to preserve the accuracy (polynomial
reproduction) and regularity of S(Φ). Throughout this section Φ is a generator in Gn

k

and σ is a squeeze map on Gn
k with matrix sequences (A

(j)
L ) and (A

(j)
R ). Recall that

Rj = (A
(j)
L )−1A

(j)
R for j ∈ Z.

First we address the smoothness of Sσ(Φ). Since Sσ(Φ) restricted to bounded
intervals has finite dimension it follows that Sσ(Φ) ⊂ Cm(R) if and only if σj(Φ) ⊂
Cm(R) for all j ∈ Z.
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Theorem 3.1. Suppose Φ ⊂ Cm(R). Then, for j ∈ Z, σj(Φ) ⊂ Cm(R) if and
only if Φ̄(q)(0) is either 0 or a right eigenvector of Rj with eigenvalue (Lj/Lj−1)

q for
0 ≤ q ≤ m, that is, if and only if

RjΦ̄
(q)(0) = (Lj/Lj−1)

qΦ̄(q)(0).(3.1)

(Here Φ̄(q) denotes the qth derivative of Φ̄.)
Hence, Sσ(Φ) ⊂ Cm(R) if and only if (3.1) holds for all j ∈ Z.
Proof. The theorem follows from

σj(Φ)
(q)(j−) =

(
(Lj−1)

−qA
(j)
L Φ̄(q)(0−)
0

)

and

σj(Φ)
(q)(j+) =

(
(Lj)

−qA
(j)
R Φ̄(q)(0+)
0

)

for 0 ≤ q ≤ m and j ∈ Z.
Let Πp, p ≥ 0, denote the collection of univariate polynomials of degree at most

p. A generator Φ is said to have accuracy p+1 if Πp ⊂ S(Φ). If Φ has accuracy p+1,
then (since B(Φ) is a linearly independent set), for each l = 0, . . . , p, there is a unique
sequence of 1× n vectors (αl(j))j∈Z such that

xl =
∑
j∈Z

αl(j)Φ(x− j) =
∑
j

ᾱl(j)Φ̄(x− j) + ᾰl(j)Φ̆(x− j).(3.2)

We say Sσ(Φ) has accuracy p + 1 if Πp ⊂ Sσ(Φ), in which case there exists, for
each l = 0, . . . , p, a unique sequence (α′

l(j))j∈Z, such that

xl =
∑
j

α′
l(j)σj(Φ)(x).(3.3)

Theorem 3.2. Suppose Φ has accuracy p + 1 and σ is a squeeze map for Φ.
Then Sσ(Φ) has accuracy p+1 if and only if ᾱl(0) is either 0 or a left eigenvector of
Rj with eigenvalue (Lj/Lj−1)

l for l = 0, . . . , p and all j ∈ Z.
Proof. Using (3.3) and the definition of σj(Φ), observe that Sσ(Φ) having accuracy

p+ 1 is equivalent to the existence of sequences (α′
l(j))j∈Z, l = 0, . . . , p, such that

xl = ᾱ′
l(j)A

(j)
R Φ̄ ◦ τj(x) + ᾱ′

l(j + 1)A
(j+1)
L Φ̄ ◦ τj+1(x) + ᾰ′

l(j)Φ̆ ◦ τj(x),

for j ∈ Z, and x ∈ τ−1
j ([0, 1]) = [aj , aj+1]. By substituting τ−1

j (x) for x in the above,
we obtain

l∑
i=0

(
l
i

)
Li
jx

ial−i
j = ᾱ′

l(j)A
(j)
R Φ̄(x) + ᾱ′

l(j + 1)A
(j+1)
L Φ̄(x− 1) + ᾰ′

l(j)Φ̆(x),

where l and j are as above, but here x ∈ [0, 1]. Now, since Φ has accuracy p+ 1, we
can use (3.2) to replace xi in the above. In particular,

xi = ᾱi(0)Φ̄(x) + ᾱi(1)Φ̄(x− 1) + ᾰ(0)Φ̆(x)
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for x ∈ [0, 1]. With this substitution and the minimal support properties of Φ, we
find an equivalent system of equations,

ᾰ′
l(j) =

l∑
i=0

(
l
i

)
Li
ja

l−i
j ᾰi(0),

ᾱ′
l(j)A

(j)
R =

l∑
i=0

(
l
i

)
Li
ja

l−i
j ᾱi(0),

ᾱ′
l(j + 1)A

(j+1)
L =

l∑
i=0

(
l
i

)
Li
ja

l−i
j ᾱi(1).

(3.4)

Now, since A
(j)
L and A

(j)
R are invertible for all j, the last two of these lead to

l∑
i=0

(
l
i

)
Li
ja

l−i
j ᾱi(0)(A

(j)
R )−1 =

l∑
i=0

(
l
i

)
Li
j−1a

l−i
j−1ᾱi(1)(A

(j)
L )−1.(3.5)

Here, we may apply Lemma 3.6 proved at the end of this section, observing that αi(0)
and αi(1) satisfy (3.11), as, therefore, do ᾱi(0) and ᾱi(1). The “only if” part of the
result follows.

All steps in the above argument are reversible except the one from (3.4) to (3.5).
The “if” part of the result is achieved by choosing ᾰ′ and ᾱ′ as in (3.4). The choice
is consistent with (3.5) and leads to the desired accuracy of Sσ(Φ).

If Φ ⊂ Cm(R) and has accuracy p+ 1, then Φ̆(q)(0) = 0 for 0 ≤ q ≤ m and so

ᾱl(0)Φ̄
(q)(0) =

dq

dxq
xl

∣∣∣∣
x=0

= (q!)δl,q(3.6)

for 0 ≤ q ≤ m and 0 ≤ l ≤ p, where δl,q denotes the Kronecker delta. For 0 ≤ q ≤ m
and 0 ≤ l ≤ p, we define the following matrices:

Vl =



ᾱ0(0)
...

ᾱl(0)


 and Wq =

(
Φ̄(0) · · · Φ̄(q)(0)

)
.(3.7)

Then (3.6) is equivalent to the matrix equation

VpWm = D,(3.8)

where D is the (p+1)× (m+1) diagonal matrix whose (l, l)th component is (l− 1)! .
The rank of the right side of (3.8) is min(m+ 1, p+ 1). Also, Vp and Wm have rank
at most k which gives the following bound for k.

Lemma 3.3. Suppose Φ ⊂ Cm(R) and has accuracy p+ 1; then

k ≥ min(m+ 1, p+ 1).

Next we consider when accuracy or smoothness uniquely determines the squeeze
map (up to equivalency) and when accuracy forces smoothness or smoothness forces
accuracy.
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Theorem 3.4. Suppose Φ ⊂ Cm(R) and has accuracy p + 1. Let a be a given
knot sequence.

(i) If k ≤ p + 1 and the square matrix Vk−1 is nonsingular, then there exists
a unique (up to equivalence) squeeze map σ with knot sequence a such that
Sσ(Φ) has accuracy k. In addition, Sσ(Φ) ⊂ Cm(R).

(ii) If k ≤ m + 1 and the square matrix Wk−1 is nonsingular, then there exists
a unique (up to equivalence) squeeze map σ with knot sequence a such that
Sσ(Φ) ⊂ Ck−1(R). Furthermore, Sσ(Φ) has accuracy p+ 1.

Proof. Case (i). Suppose k ≤ p+ 1, V := Vk−1 is nonsingular, and σ is a squeeze
map for Φ. Then ᾱl(0) �= 0 for 0 ≤ l ≤ k − 1, and so Theorem 3.2 asserts that Sσ(Φ)

has accuracy k if and only if ᾱl(0) is a left eigenvector of Rj with eigenvalue (
Lj

Lj−1
)l

for 0 ≤ l ≤ k − 1 and j ∈ Z. The latter condition is equivalent to

V Rj = Λ(Lj/Lj−1)V (j ∈ Z),

where Λ(λ) is a k × k diagonal matrix whose (l, l)th component is λl−1 for λ ∈ R+.
Thus, Sσ(Φ) has accuracy k if and only if

Rj = V −1 Λ(Lj/Lj−1)V (j ∈ Z).(3.9)

Equation (3.8) shows that Φ(q)(0) is the qth column of V −1D. Multiplying both
sides of (3.9) on the right by Φ(q)(0) then shows that Φ̄(q)(0) is a right eigenvector

of Rj with eigenvalue (
Lj

Lj−1
)q for 0 ≤ q ≤ m. Hence, Theorem 3.1 shows that

Sσ(Φ) ⊂ Cm(R).
Case (ii). Now suppose k ≤ m+ 1 and W := Wk−1 is nonsingular. As in case (i)

we find that Sσ(Φ) has accuracy k if and only if

Rj = W Λ(Lj/Lj−1)W
−1(3.10)

and that ᾱl(0) is a left eigenvector of Rj with eigenvalue (
Lj

Lj−1
)l for 0 ≤ l ≤ p. Hence

Theorem 3.2 shows that Sσ(Φ) has accuracy p+ 1.
If k = min(m+1, p+1), then it follows from (3.8) that Vk−1 and Wk−1 are both

nonsingular, and so both cases in Theorem 3.4 hold. The next theorem shows that
Sσ(Φ) contains the spline space

Sm
p (a) := {f ∈ Cm(R) | f |(aj ,aj+1) ∈ Πp, j ∈ Z}

when k = min(m+1, p+1). In this case, it is known from classical spline theory that
the accuracy determines the approximation order of Sσ(Φ). Note that S

m
p (a) = Πp if

m ≥ p.
Theorem 3.5. Suppose Φ ⊂ Cm(R), Φ has accuracy p + 1 and k = min(m +

1, p+ 1). Let a be a given knot sequence.
(i) There exists a squeeze map σ with knot sequence a such that Sσ(Φ) ⊂ Cm(R)

and has accuracy p+ 1.
(ii) If ν is any other squeeze map with knot sequence a such that either Sν(Φ) ⊂

Ck−1(R) or (ν,Φ) has accuracy k, then ν is equivalent to σ.
(iii) Sm

p (a) ⊂ Sσ(Φ). (This is nontrivial only when m < p, in which case k =
m+ 1.)

Proof. If k = min(m + 1, p + 1), then it follows from (3.8) that Vk−1 and Wk−1

are both nonsingular and parts (i) and (ii) follow from Theorem 3.4.
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From part (i) we have Πp ⊂ Sσ(Φ), and so we need only consider the case m < p.
Since Wk−1 is nonsingular, it follows from (3.8) that ᾱl(0) = 0 for l = m+ 1, . . . , p.

For simplicity, first suppose that one of the knots, say ai, is 0. Then (3.4) implies

ᾱ′
l(i)A

(j)
R = Ll

iᾱl(i) = 0 (l = m+ 1, . . . , p).

Thus (3.3) becomes

xl = ᾰ′
l(i)σ̆i(Φ) +

∑
j �=i

α′
l(j)σj(Φ).

Thus the truncated powers (x+)
l, l = m+ 1, . . . , p, can be written as

(x+)
l = ᾰ′

l(i)σ̆i(Φ) +
∑
j>i

α′
l(j)σj(Φ),

and so they are in Sσ(Φ) for l = m + 1, . . . , p. Observe that shifting the knots by a
constant shift translates the basis Bσ(Φ) by the same amount. Hence Sσ(Φ) contains

the truncated powers ((x− aj)+)
l
for l = m + 1, . . . , p and j ∈ Z. The truncated

powers form a basis for Sm
p (a) showing that (iii) holds.

Finally, we prove the following lemma that was used in the proof of Theorem 3.2.
Lemma 3.6. Suppose a0, a1, L1 ∈ R and L0 = a1 − a0. Further, suppose α(0)

and α(1) are sequences of 1× k vectors such that

αl(1) =

l∑
i=0

(
l
i

)
αi(0)(3.11)

for l = 0, . . . , p. Then the k × k matrices C and D satisfy the conditions

l∑
i=0

(
l
i

)
Li

1a
l−i
1 αi(0)C =

l∑
i=0

(
l
i

)
Li

0a
l−i
0 αi(1)D(3.12)

for l = 0, . . . , p if and only if

αl(0)(L
l
1C − Ll

0D) = 0(3.13)

for l = 0, . . . , p.
Proof. For a given l, we may use (3.11) to substitute for αi(1) in (3.12). Then

using routine combinatorial manipulations we find

l∑
i=0

(
l
i

)
Li

1a
l−i
1 αi(0)C =

l∑
j=0

(
l
j

)
αj(0)D

l∑
i=j

(
l − j
i− j

)
Li

0a
l−i
0 .(3.14)

By shifting the index on the inner sum by j, the left-hand side becomes

l∑
j=0

(
l
j

)
αj(0)D

l−j∑
i=0

(
l − j
i

)
Li+j

0 al−i−j
0

=

l∑
j=0

(
l
j

)
αj(0)L

j
0a

l−j
1 D,
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where the final equality follows from a1 = a0 + L0 and the binomial theorem. Thus
(3.12) is equivalent to

l∑
i=0

(
l
i

)
al−i
1 αi(0)(L

i
1C − Li

0D) = 0.

From here it is easy to show the equivalence with (3.13) by induction on l =
0, . . . , p.

4. Constructing the squeeze map. Suppose Φ ⊂ Cm(R), Φ has accuracy
p+1 and k ≤ max(m+1, p+1). Then either case (i) or (ii) of Theorem 3.4 holds and
the squeeze map preserving accuracy in case (i) or smoothness in case (ii) is unique
up to equivalence. In both cases there is a full set of k eigenvectors for Rj for j ∈ Z
with specified eigenvalues. These eigenvectors then uniquely determine Rj through
either (3.9) or (3.10). In case (i), let U = Vk−1 and in case (ii) let U = W−1

k−1, where
Vk−1 and Wk−1 are given by (3.7). Let

R(λ) := U−1 Λ(λ)U (λ > 0).(4.1)

Then Rj = R(λj), where λj := Lj/Lj−1 for j ∈ Z. Thus, the squeeze map is
determined (up to equivalence) for an arbitrary knot sequence. Furthermore, each Rj

is determined only by the ratio Lj/Lj−1.

Now suppose Φ is an orthogonal generator. Let σ be the squeeze map with matrix
sequences (I,Rj). Following the proof of Lemma 2.2, an equivalent squeeze map ν so
that Bν(Φ) is orthogonal may be found as follows. First, find a Cholesky factorization
(see (2.3)):

B(λ)B(λ)� = 〈ΦL,ΦL〉+ λR(λ)〈ΦR,ΦR〉R(λ)�.(4.2)

Let Bj =
√
Lj−1B(λj) for j ∈ Z. Then ν with matrix sequences A

(j)
L = (B−1

j ) and

A
(j)
R = (B−1

j Rj) gives an orthogonal basis. Again note that for fixed Φ, Bj depends
only on Lj−1 and Lj , and (since a Cholesky factorization is equivalent to an LU
factorization using Gaussian elimination) we can find a closed form expression for νj
in terms of the ratio λj = Lj/Lj−1. This makes it simple and quick to construct the
squeeze map for an arbitrary knot sequence.

In our examples we consider only k = 1 or k = 2. When k = 1 it is trivial to
obtain Bj . Suppose

A =

(
a b
b c

)

is a symmetric positive definite matrix. (That is, v�Av > 0 for any nonzero 2-vector
v.) Then A is positive definite if and only if both a and detA are positive. One choice
for B such that BB� = A is given by

B =
1√
a

(
a 0

b
√
detA

)
.(4.3)

5. Orthogonal minimally supported generators.
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5.1. Rescaling orthogonal generators. Any orthogonal compactly supported
generator may be used to construct an orthogonal generator supported on [−1, 1] as
we next describe. If the support of Φ = (φ1, . . . , φn)

� is contained in [−1,M ], then
let ΦM denote the generator consisting of the concatenation of the M generators
Φ(M · +k), (k = 0, . . . ,M − 1). Then ΦM is an orthogonal generator supported in
[−1, 1] and S(ΦM ) equals S(Φ)(M ·) (that is, the dilation by 1/M of the space S(Φ)).
The local linear independence conditions for minimal support must then be checked
separately. However, when Φ is an orthogonal scalar (n = 1) refinable generator it is
known that Φ is locally linearly independent (that is, the nonzero restrictions of the
shifts of Φ to any open interval are linearly independent), which implies the weaker
type of local linear independence we require in the definition of minimal support. The
example in section 6.3 is constructed in this way.

5.2. General construction. In [5] the authors developed a method for con-
structing orthogonal generators. For W ⊂ L2(R), let PW denote the orthogonal
projection onto W .

Lemma 5.1 (see [5]). Suppose Φ is a minimally supported k-generator. There
exists an orthogonal minimally supported k-generator Ψ such that S(Ψ) = S(Φ) if and
only if

(I − PS(Φ̆))Φ̄ ⊥ (I − PS(Φ̆))Φ̄(· − 1).(5.1)

(That is, (I − PS(Φ̆))φi ⊥ (I − PS(Φ̆))φj(· − 1) for 1 ≤ i, j ≤ k.)

Proof (sketch of proof). Let Ψ̆ be an orthogonal basis for the span of Φ̆ and
choose Ψ̄ to be an orthogonal basis for the span of (I − PS(Φ̆))Φ̄. Then Ψ is an

orthogonal, minimally supported k-generator for S(Φ) if Ψ and Ψ(·−1) are orthogonal
(or, equivalently, if (5.1) holds). The other direction relies on the observation that if
Φ and Ψ are minimally supported k-generators such that S(Ψ) = S(Φ), then

spanΦ̆ = spanΨ̆

and

spanΦ ∪ Φ̆(·+ 1) = spanΨ̆ ∪ Ψ̆(·+ 1)

The idea of the construction is to choose Φ̆ so that (5.1) holds. The orthogonal
generators in the examples in sections 6.1 and 6.2 and section 7 are constructed in
this way.

6. Examples. In this section we present several examples to illustrate our meth-
ods. The examples in sections 6.1 and 6.2 first appeared in [4]. In both examples
it is the smoothness condition that determines the squeeze map. Also, in these two
examples, k = min(m + 1, p + 1), and so the resulting Sσ(Φ) contains Sm

p (a) by
Theorem 3.5.

In the example in section 6.3, we rescale Daubechies’s orthogonal scaling function

2φ as described in section 5.1 to construct a continuous orthogonal refinable generator
minimally supported on [-1,1] with k = n = 2. The accuracy in this case is p+ 1 = 2
and, by Theorem 3.4 (i), the squeeze map is uniquely determined by the accuracy
condition once a knot sequence is specified. In fact, it is this example that motivated
our study of the accuracy of squeezed spaces Sσ(Φ). In the example in section 6.3 we
have m+ 1 = 1 < 2 = k, and so Theorem 3.5 does not apply in this case.
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We are also interested in this example because the generator Φ is refinable; that
is,

Φ(·/2) =
∑
j∈Z

c(j)Φ(· − j)(6.1)

for some finitely supported sequence c : Z �→ Rn×n. (In this case the support of c is
{−2,−1, 0, 1}.)

We next remark that such a refinable minimally supported generator Φ gener-
ates a semiregular multiresolution analysis (that is, a multiresolution consisting of a
nonuniform coarse space that is uniformly refined; see [3]) as follows: Let a0 be an
arbitrary knot sequence and let a1 ⊃ a0 be given by

a1
2j = a0

j and a1
2j+1 = (a0

j + a0
j )/2 (j ∈ Z).

Let σ0 and σ1 be the squeeze maps determined (up to equivalence) by the knot
sequences a0 and a1, respectively. Then one may verify that Sσ0(Φ) ⊂ Sσ1(Φ). Thus
we provide a way to construct orthogonal semiregular multiresolutions from orthogonal
scaling functions in a way that preserves the accuracy and smoothness of the shift-
invariant multiresolution.

In the example in section 4, we construct an irregular multiresolution analysis
(that is, a fully nonuniform multiresolution; see [3]) such that each space in the
multiresolution has a compactly supported orthogonal basis consisting of continuous
piecewise quadratic functions. The spaces in this irregular multiresolution are not,
strictly speaking, squeezed spaces of the form Sσ(Φ) but instead result from a slight
generalization of our notion of the squeeze map.

6.1. k = 1, m = 0, p = 1, n = 2. Let h denote the hat function defined by
h(x) = (1− |x|)+ and suppose w ∈ L2(R) is nontrivial and supported in the interval
[0, 1]. Let Φ = (h,w). Then (5.1) reduces to

〈h, h(· − 1)〉 = 〈h,w〉〈w, h(· − 1)〉
〈w,w〉 .(6.2)

Thus, any w ∈ L2(R) supported in [0, 1] and satisfying (6.2) gives an orthogonal gen-
erator Ψ by the process described in Lemma 5.1. For example, let q be the piecewise
quadratic function given by q(x) = x(1− x)χ[0,1](x). Choose w ∈ span{q, q2} so that
w = c1q + c2q

2 for some constants c1, c2. Substituting into (6.2) yields a quadratic
equation in the variable α := c2/c1:

α2 + 30α+ 105 = 0

or α = −15 ± 2
√
30. The graphs of φ1 and φ2 are shown in Figure 6.1 for α =

−15− 2
√
30. (This example was first given in [4].)

For 0 ≤ x ≤ 1, we have

φ1(x) =
√
3 (1− x)

(
1− 2x+

(
−3 +

√
30
)
x (1− 5 (1− x) x)

)
and

φ2(x) =

√
330− 60

√
30 (1− x) x

(
−1 +

(
15 + 2

√
30
)
(1− x) x

)
.
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-1 -0.5 0.5 1

0.5

1

1.5

Fig. 6.1. Continuous orthogonal generator of the example in section 6.1.

Note that φ1 is even and supported on [−1, 1] and that φ2 has support [0, 1].
In the case k = 1 and m = 0, the squeeze maps preserving continuity are given

by Rj = 1 for all j ∈ Z. By Theorem 3.4, this squeeze map will also preserve the
approximation of Φ. By the symmetry of Φ we have

〈ΦL,ΦL〉 = 〈ΦR,ΦR〉 = 1/2.

Using (2.3) we get that σ given by

Aj
L = Aj

R =

√
2

Lj−1 + Lj

generates an orthogonal basis Bσ(Φ).

6.2. k = 2, m = 1, p = 3, n = 4. We next construct a continuously differen-
tiable orthogonal generator. We start with the C1 cubic Hermite spline functions

h1(x) =




(1 + x)2(1− 2x), x ∈ [−1, 0],
(1− x)2(1 + 2x), x ∈ [0, 1],
0 otherwise,

h2(x) =




(1 + x)2x, x ∈ [−1, 0],
(1− x)2x, x ∈ [0, 1],
0 otherwise

and add two continuously differentiable functions w1 and w2 supported on [0, 1]. (In
[5], it is shown that at least two w’s are required in this case.) The condition (6.2) is
equivalent to the following:

〈hi, hj(· − 1)〉 = 〈hi, w1〉〈w1, hj(· − 1)〉
〈w1, w1〉 +

〈hi, w2〉〈w2, hj(· − 1)〉
〈w2, w2〉 .(6.3)

Again let q be the piecewise quadratic function given by q(x) = x(1−x)χ[0,1](x). We
choose w1 to be of the form (c1+c2q+c3q

2)q2 and w2 of the form (·−1/2)(c4+c5q)q
2
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1
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1
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0.75

1

1.25
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Fig. 6.2. The C1 orthonormal generator of the example in section 6.2. From upper left, going
clockwise: φ1, φ3, φ4, φ2.

so that w1 is symmetric about x = 1/2 and w2 is antisymmetric about x = 1/2.
Substituting into (6.3) yields three quadratic equations in the three variables c2/c1,
c3/c1, and c5/c4. Solving these equations numerically and choosing c1 and c4 so that
‖w1‖ = ‖w2‖ = 1 yields several solutions. One solution with good properties is given
by

c1 +2.102558692333885
c2 +214.7707569159831
c3 -492.4339092336308
c4 -112.0742772596177
c5 +1401.893433767276

The graphs of the components of the resulting orthogonal generator (φ1, φ2, φ3, φ4)
are shown in Figure 6.2.

From the construction of Φ we see that W =
(
Φ̄(0) Φ̄′(0)

)
is diagonal, and so,

using (4.1), we get that Sσ(Φ) ⊂ C1(R) if

Rj = R(λj) =

(
1 0
0 λj

)
,

where λj := Lj/Lj−1.
Since Φ is piecewise polynomial, the inner products 〈ΦL,ΦL〉 and 〈ΦR,ΦR〉 are

easily calculated. Using Mathematica to perform these calculations, we arrive at the
squeeze maps defined by

A
(j)
L =

1√
Lj−1

×




1.414213√
1+λj

0

2.829115−2.829115λ2
j

(1+λj)
√

(0.381634+λj) (1+λj) (2.62031+λj)

3.162893√
(0.381634+λj) (1+λj) (2.62031+λj)
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(a) (b)

Fig. 6.3. C1 basis functions σ̄j(Φ) from the example in section 6.2 for (a) λj = 3 (knots at 1,
2, and 5) and (b) λj = 7 (knots at 1, 3/2, and 5).

and

A
(j)
R =

1√
Lj−1

×




1.414213√
1+λj

0

2.829115−2.829115λ2
j

(1+λj)
√

(0.381634+λj) (1+λj) (2.62031+λj)

3.162893λj√
(0.381634+λj) (1+λj) (2.62031+λj)


 .

We show in Figure 6.3 the resulting σ̄j(Φ) for several values of λj .

6.3. Semiregular multiresolution analysis: k = 2, m = 0, p = 1, n = 2.
Let 2φ denote the continuous orthogonal scaling function of Daubechies supported on
[0, 3] (see [2]) and let

Φ =
√
2

(
2φ(2 ·+2)
2φ(2 ·+1)

)
.

Then, as discussed in section 5.1, Φ is an orthogonal generator supported on [−1, 1].
The local linear independence condition for minimal support may be verified from the
support properties of Φ and the fact that the components of ΦR are orthogonal to
the components of ΦL, thus showing that Φ is a minimally supported generator with
k = 2. Also, note that Φ is continuous and has accuracy 2. In this example, it is the
accuracy that determines the squeeze map.

Recall that 2φ satisfies a refinement equation

2φ =

3∑
j=0

cj 2φ(2 · −j),(6.4)

where

c0 =
1 +

√
3

4
, c1 =

3 +
√
3

4
, c2 =

3−√
3

4
, c3 =

1−√
3

4
.

Using the refinement equation it is possible to calculate the following coefficients
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from the zeroth and first moments of 2φ (see [1]):

α0(0) =

(
1√
2
,
1√
2

)
, α1(0) =

(
−1−√

3

4
√
2

,
1−√

3

4
√
2

)

and

〈ΦR,ΦR〉 =
(

7
12 +

5
7
√

3
1

28
√

3
1

28
√

3
5
12 +

5
7
√

3

)
, 〈ΦL,ΦL〉 =

(
5
12 − 5

7
√

3
−1

28
√

3−1
28

√
3

7
12 − 5

7
√

3

)
.

Then

R(λ) =
1

2

(
1−√

3 +
(
1 +

√
3
)
λ

(
1 +

√
3
)
(1− λ)(

1−√
3
)
(1− λ) 1 +

√
3 +

(
1−√

3
)
λ

)

and

(〈ΦL,ΦL〉+ λR(λ)〈ΦR,ΦR〉R(λ)�
)
=

1

84

(
a(λ) b(λ)
b(λ) c(λ)

)
,

where

a(λ) = 35− 20
√
3 + 4

(
21 + 8

√
3
)
λ− 4

(
44 + 23

√
3
)
λ2 +

(
141 + 80

√
3
)
λ3,

b(λ) = (−1 + λ)
(√

3− 84λ− 31
√
3λ+ 42λ2 + 19

√
3λ2

)
,

c(λ) = 49− 20
√
3 + 4

(
21 + 8

√
3
)
λ− 4

(
19 + 2

√
3
)
λ2 +

(
27− 4

√
3
)
λ3.

The factors Bj may then be calculated from (4.3).

6.4. Irregular multiresolution analysis: k = 1, m = 0, p = 2, n = 3.
Let

(
a�
)
�∈Z

be a sequence of nested knot sequences such that a�+1
2j = a�j for ., j ∈ Z

and such that {a�j | ., j ∈ Z} is dense in R. Let V� = S0,2(a
�) denote the space

of continuous piecewise quadratic splines with break points given by a�. From the
theory of splines it follows that (V�) is a multiresolution analysis. Here we construct
a multiresolution (V ′

� ) such that

V� ⊂ V ′
� ⊂ V�+1

and each V ′
� has a local orthogonal basis. The local orthogonal basis for V

′
� is generated

with a generalization of the squeeze map idea. Our construction here extends the idea
of intertwining multiresolution analyses developed in [5] to the nonuniform case.

Let Φ = (h, q), where h and q are as in the example in section 6.1. Then V� =
Sσ�(Φ), where σ� is the squeeze map with knot sequence a� given by Rj = 1.

Let I�j = [a�j , a
�
j+1]. The idea of the construction is to add basis functions w�

j ∈ V�

supported on I�j for each j ∈ Z to the basis Bσ�(Φ) in such a way that the resulting
space V ′

� has a local orthogonal basis. We first describe the construction when I =
I�j = [0, 1]; the general case will follow by rescaling. Then a := a�+1

2j+1 is in (0, 1).
Define q1,0, q1,1, and h1 by

q1,0(x) = q(x/a), q1,1 = q

(
x− a

a

)
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and

h1(x) =



x/a for x ∈ [0, a],

(1− x)/(1− a) for x ∈ [a, 1],

0 otherwise.

Observe that the space A of functions in V �+1 whose support is contained in [0,1] is
spanned by q1,0, q1,1, and h1. Note that q is in this 3-dimensional space. We choose
w = w�

j in the 2-dimensional orthogonal complement of q in A. A basis for this space
is given by (with help from Mathematica)

u0 = a2(3a− 5)q1,0 + (1− a)2(2 + 3a)q1,1

u1 = (−2 + 3 (−1 + a) a3)q1,0 + (−2 + 3 (−1 + a)
3
a)q1,1

+

(
16

5
− 12 (−1 + a)

2
a2

)
h1.

We choose w in A and orthogonal to q so that it is of the form

w = c1u1 + c2u2.

Define

θR = (I − Pspan(w,q))hR

and

θL = (I − Pspan(w(·+1),q(·+1)))hL,

where hR = hχ[0,1) and hL = hχ[−1,0). In order to construct a local orthogonal basis
we require

〈θR, θL(· − 1)〉 = 0,

which is equivalent to the following quadratic equation in the variable c = c1/c2:

0 =5
(
4− 5 (1− a)

2
a2 (15 + (1− a) a)

)
(6.5)

− 20 (2 + a (9 + 13 a (−3 + 2 a))) c+ 4 (1 + 45 (1− a) a) c2.

The discriminant of this equation is

80
(
4− 15 (1− a)

2
a2
)2

,

giving the two solutions

c =
20(2 + a(9 + 13a(2a− 3)))± 4

√
5(4− 15(1− a)2a2)

8(1 + 45(1− a)a)
.

Hence, there are two choices for w for any a ∈ (0, 1). For each a ∈ (0, 1) choose one
such w and denote it by Wλ, where λ = (1 − a)/a is the ratio of the lengths of the
two subintervals [0, a] and [a, 1]. Let θR,λ = θR and θL,λ = θL with w = Wλ. Define

ΦλL,λR =


θL,λL

+ θR,λR

q
WλR
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Fig. 6.4. Continuous, orthogonal piecewise quadratic basis functions from the example in sec-
tion 6.4 with knots a�+1 = . . . , 0, 1, 3, 6, 7, 8, 10, . . . .

and note that ΦλL,λR is continuous and supported on [−1, 1]. Given a�+1 we construct

basis functions supported on [a�j−1, a
�
j+1] = [a�+1

2j−2, a
�+1
2j+2] as follows. Let τ

�
j be as in

(2.1) with knot sequence a�, let L�
j = a�j+1 − a�j , and let

λ�
j = L�+1

2j+1/L
�+1
2j .

Note that the collection of functions

B� =
⋃
j∈Z

Φλ�
j−1,λ

�
j ◦ τ �j

is an orthogonal system of functions. Let

V ′
� = spanL2B�

for . ∈ Z. Then

V� ⊂ V ′
� ⊂ V�+1 ⊂ V ′

�+1,

from which it follows that (V ′
� )�∈Z is a multiresolution with local orthogonal basis B�.

Figure 6.4 shows several of the basis functions (we chose the minus branch of the
square root) for a� = . . . , 0, 3, 7, 10, . . . and a�+1 = . . . , 0, 1, 3, 6, 7, 8, 10, . . . .

7. Higher order accuracy and smoothness. Let Sn
m be the space of poly-

nomial splines of degree n with Cm knots at the integers. If we denote An,m =
{g ∈ Sn

m : supp g = [0, 1]}, then it is easy to see [6] that an orthogonal basis for

An,m is provided by φm
i (t) = tm(1 − t)mp

2m+5/2
i−2m−2(2t − 1), 2m + 2 ≤ i ≤ n, where

p
2m+5/2
j (t) is the monic ultraspherical polynomial of degree j with λ = 2m + 5/2.

If we set Φ = (φm
0 · · ·φm

n )
T , where φm

i , i = 0, . . . ,m, supp φm
i = [−1, 1] are appro-

priately chosen (i.e., judicious linear combinations of rim and lim, i = 0, . . . ,m, with
rim(t) = ti(1 + t)m+1 − 1 ≤ t ≤ 0 and lim(t) = ti(1 − t)m+10 < t ≤ 1), then Φ and
all its integer translates form a basis for Sn

m. This basis is not orthogonal, so Φ does
not generate a local orthogonal basis. We will modify Φ in order to construct an
orthogonal set of generators. We do this by adding to Φ, m+1 functions wi chosen so
that W ⊥ An,m and 〈(I − PW )φ̂m

i , (I − PW )φ̂m
j (· − 1)〉 = 0 i, j = 1, . . . ,m + 1.

Here W = span{wi : i = 1, . . . ,m + 1}, PW is the orthogonal projection onto
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W , and φ̂m
i = (I − P{An,m,An,m(+1)})φm

i . In the examples given below we will
choose wi to be linear combinations of {φm

j }j>n. In this way wi ⊥ An,m since the

{tm(1 − t)mp
2m+5/2
l (2 · −1)}∞l=0 is a set of orthogonal polynomials. Notice that the

above wi will have their knots located at the integers. This is in contrast to the
construction carried out in [6] where in order to build a MRA it was necessary to use
wi with half integer knots.

7.1. C0 example. As a first example we consider the case m = 0. Then r0(t) =
(1 + t) and l0(t) = (1 − t), and we will choose wn

1 = φ0
n+1 + αnφ

0
n+3. Since φ0

i

is symmetric or antisymmetric about 1/2 depending on whether i is even or odd,
respectively, we see that wn

1 chosen above will be either symmetric or antisymmetric.

With r̂n0 (·) = (I − PAn,0)r0(· − 1) and l̂n0 (t) = (I − PAn0 )l0 we choose αn so that

〈(I −Pwn
1
)r̂0, (I −Pwn

1
)l̂0(t)〉 = 0. This gives the following quadratic equation for αn:

〈r̂n0 , l̂n0 〉〈wn
1 , w

n
1 〉 = 〈wn

1 , r0(· − 1)〉〈wn
1 , l0〉(7.1)

or

〈r̂n0 , l̂n0 〉(〈φ0
n+1, φ

0
n+1〉+ α2

n〈φ0
n+3, φ

0
n+3〉)

= (〈φ0
n+1, r0(· − 1)〉+ αn〈φ0

n+3, r0(· − 1)〉)(〈φ0
n+1, l0〉+ αn〈φ0

n+3, l0〉).(7.2)

From [6] we find 〈r̂n0 , l̂n0 〉 = (−1)n+1n!
(n+3)! , 〈r̂n0 , r̂n0 〉 = 1

n(n+2) , and 〈r0, φ0
n〉 = 2n−2 n!(n−2)

2n! .

Furthermore, since 〈φ0
n, φ

0
n〉 = 1

32
(n+2)!(n−2)!

(2n−1)!(2n+1)!! , the above equation may be solved for

αn to obtain

αn =

− ((2n+ 7)(2n+ 3)(n+ 1)±√
3(2n+ 7)(2n+ 3)(n+ 1)(n+ 3)(n+ 3))(2n+ 5)

(n+ 2)(n+ 1)(n2 − 5n− 30)
,

and φn,0
0 is given by

φn,0
0 (t) = (I − P(wn

1 ,wn
1 (·+1)))h(t),

where h(t) = (1− |t|)+.
With φn,0

1 = wn
1 we have the following theorem,

Theorem 7.1. For n ≥ 3,Φn = (φn,0
0 , φn,0

1 , φ0
2 . . . , φ

0
n)

T constructed as above is
a continuous orthogonal generator for B(Φ). Furthermore, Φn has accuracy n+ 1.

Figure 7.1 shows φn,0
0 and φn,0

1 for n = 3.

7.2. C1 example. We now construct a family of C1 orthogonal compactly sup-
ported generators which have varying degrees of accuracy. In this case four ramp
functions, ri1 = ti(1 + t)2, i = 0, 1 and li1 = ti(1 − t)2, i = 0, 1, are needed in the
construction of the orthogonal generators with support equal to [−1, 1]. We set

r̂n,i1 (·) = (I − PAn,1)ri1(· − 1) and l̂n,i1 (t) = (I − PAn,1)li1. The necessary integrals
to compute the above projections can be found in [6]. In order to make the computa-
tions somewhat more tractable we biorthogonalize the above ramp functions. Utilizing
the integrals [6]

〈r̂n,10 , l̂n,10 〉 = 4(−1)n+1(n2 + 2n− 9)(n− 2)!

(n+ 3)!
,(7.3)
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Fig. 7.1. The functions φ0 and φ3 from section 7.1 for n = 3.

〈r̂n,10 , l̂n,11 〉 = 12(−1)n+1(n− 2)!

(n+ 3)!
,(7.4)

and

〈r̂n,11 , l̂n,11 〉 = 36(−1)n+1(n− 3)!

(n+ 4)!
,(7.5)

we set rn,0 = r̂n,10 , ln,0 = l̂n,10 , rn,1 = r̂n,11 − 〈r̂n,1
1 ,ln,0〉

〈rn,0,ln,0〉rn,0, and ln,1 = l̂n,11 −
〈l̂n,1

1 ,rn,0〉
〈rn,01,ln,1〉 ln,1. With the help of the inner products given above, we find

〈rn,1, ln,1〉 = (−1)n36(n− 3)!

(n+ 4)!(n2 + 2n− 9)
(7.6)

and

〈rn,1, φ1
i 〉 = −3

8

2n+i(n+ i)!(n+ i− 4)!(i2 + i+ 2ni− n− 3)

(2n+ 2i)!(n2 + 2n− 9)
.(7.7)

Two functions wi, i = 1, 2 will be needed to construct orthogonal generators from the
above ramp functions, and these will be symmetric and antisymmetric with respect
to 1/2 in order to construct symmetric or antisymmetric generators. To this end
let w1 = v0(n) + α1(n)v2(n), where vi(n) linear combinations of φ

1
n+1+i and φ1

n+3+i

and chosen so that 〈vi(n), rn,1〉 = 0. Thus v0(n) = − (5n+9)(n−2)
2(2n+5)(2n+3)φ

1
n+1 + φ1

n+3 and

v2(n) = −9 (n+3)(n+1)n
2(2n+9)(2n+7)(5n+9)φ

1
n+3+φ1

n+5. Likewise, w2 = v1(n)+α2(n)v3(n), where

vi(n) i = 1, 3 are orthogonal to rn,0. In this case v1(n) = − (n+8)(n+1)n
2(2n+7)(2n+5)(n+8)φ

1
n+2 +

φ1
n+4 and v3(n) = v1(n+ 2). The biorthogonality of the ramps and the construction

of vi, i = 0, 1, 2, 3 imply that each αi(n) must be chosen as a solution to the equation

〈rn,i, ln,i〉〈wi+1, wi+1〉 = 〈wi+1, r
1
i (· − 1)〉〈wi+1, l

1
i 〉.
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Utilizing (7.6), (7.7), and 〈φ1
n, φ

1
n〉 = n!(n+8)!

256(2n+9)!!(2n+7)!! to compute the inner products

needed in the above equation we find using Maple that

α1(n) =
(5n+ 9)(2n+ 7)

(n+ 3)

×
(2n+ 11)q1(n)± (n+ 4)(n+ 5)(5n+ 9)(2n+ 7)

{
5(2n+11)(n+4)
n(n+1)(2n+3) q2(n)

} 1
2

2q3(n)
,

where

q1(n) = 41n5 + 625n4 + 3733n3 + 11099n2 + 17010n+ 11340,

q2(n) = 17n5 + 131n4 − 105n3 − 2979n2 − 7884n− 6804,

and

q3(n) = 37n7 + 1376n6 + 18862n5 + 139394n4 + 502291n3

+ 1099160n2 + 1287090n+ 635040.

Likewise,

α2(n) =
(2n+ 9)(n+ 8)

(n+ 3)(n+ 6)

×

(
−(2n+ 13)q4(n)± (n+ 5)(n+ 6)(n+ 8)(2n+ 9)

{
7(2n+13)(n+4)(n+1)

(2n+5)(n+2) q5(n)
} 1

2

)
2q6(n)

,

where

q4(n) = 11n6 + 115n5 + 323n4 + 893n3 + 8642n2 + 28968n+ 25200,

q2(n) = 3n5 + 27n4 + 7n3 − 503n2 − 1486n− 1400,

and

q6(n) = 5n7 + 39n6 − 335n5 − 5129n4 − 29484n3 − 112048n2 − 242304n− 159600.

Knowing w1 and w2, we are now able to construct the orthogonal C1 generator. Let
h0(t) = 2|t|3−3 |t|2+1, if t ∈ [−1, 1), and 0 elsewhere; h1(t) = (1−|t|)2t, if t ∈ [−1, 1),
and 0 elsewhere; and φn,1

i+1 = wi, i = 1, 2. Figure 7.2 shows φn,1
0 , φn,1

1 , φn,1
2 , and φ3,1

1

for n = 6. Then with

φn,1
i =

(
I − P(φ1

2,... ,φ
1
n,φ

1
2(·+1),... ,φ1

n(·+1))

)
hi (i = 0, 1),

the above computations give the following theorem.
Theorem 7.2. For n ≥ 5, and αi(n) given above, Φ1(n) = (φn,1

0 , . . . , φ1
n)

T is a
continuously differentiable orthogonal generator for B(Φ1(n)). Furthermore, the last
n− 1 functions are symmetric or antisymmetric about 1/2. The first function φn,1

0 is
symmetric about 0, while φn,1

1 is antisymmetric about 0.
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Fig. 7.2. The functions φn,1
i for n = 6 and i = 0, . . . , 3.

We now construct the squeeze map associated with Φ1(n). Since the last n − 2
generators are supported on [0, 1] we need only concentrate on φn,1

0 and φn,1
1 . Because

of the definition of h0 and h1 and the symmetry of φn,1
0 and φn,1

1 it is easy to see that
W (n) is a diagonal matrix for all n. Therefore R(n) is as in the previous C1 example,

and with A
(j)
L a diagonal matrix R(n) is equal to A

(j)
R . In order to complete the

construction of the squeeze map we need to compute the inner products 〈ΦL,ΦL〉
and 〈ΦR,ΦR〉. From (3.9) in [6] (we would like to point out some errors in that

equation; namely, rn,ki+1 in the first term on the right-hand side should be rn,ki , the
factor multiplying the third term on the right-hand side should be (n − k − 1 − i),
and the factor multiplying the last term should be (n+ k + i+ 3)) we find that

〈rn,10 , rn,10 〉 = 4
(n2 + 2n− 6)(n− 2)!

(n+ 3)!
,(7.8)

〈rn,11 , rn,10 〉 = 6
(n− 2)!

(n+ 3)!
,(7.9)

and

〈rn,11 , rn,11 〉 = 12
(n− 3)!

(n+ 4)!
.(7.10)



SQUEEZABLE BASES 1099

To continue on we choose the minus sign in α1(n) and the plus sign in α2(n) to
compute φn,1

i i = 2, 3. Then (7.7) and the norm squared of φ1
n can be employed to

compute (using Maple) the norms of φn,1
i , i = 2, 3 and the inner products of these

functions with r̂n,1i , i = 0, 1. With these in hand, (7.8), (7.9), and (7.10) can be used
to compute 〈ΦR,ΦR〉, which is

〈ΦR,ΦR〉 =
(

4 n5+3n4−10n3−21n2+27n+18
(n−2)(n2+2n+9)(n+1)(n+2)(n+3) −6 n3−9n+6

(n−2)(n2+2n+9)(n+1)(n+2)(n+3)

−6 n3−9n+6
(n−2)(n2+2n+9)(n+1)(n+2)(n+3) 12 n−3

(n−2)(n2+2n+9)(n+1)(n+2)(n+3)

)
.

Since these functions are either symmetric or antisymmetric 〈ΦL,ΦL〉 is the same as
the above matrix, except that the off diagonal elements take the opposite sign. Thus
(2.3) becomes

BBT = (Lj + Lj−1)

×

 4 (n5+3n4−10n3−21n2+27n+18)

(n−2)(n2+2n+9)(n+1)(n+2)(n+3) 6
(Lj−Lj−1)(n

3−9n+6)
Lj−1(n−2)(n2+2n+9)(n+1)(n+2)(n+3)

6
(Lj−Lj−1)(n

3−9n+6)
Lj−1(n−2)(n2+2n+9)(n+1)(n+2)(n+3) 12

(L2
j−LjLj−1+L2

j−1)(n−3)

L2
j−1(n−2)(n2+2n+9)(n+1)(n+2)(n+3)


 .

The determinant of the above matrix may be written as

det(BBT ) = (Lj + Lj−1)
2

×12(n3 − 9n− 18)(L2
j + L2

j−1) + 6(5n5 − 92n3 + 54n2 + 423n− 450)LjLj−1

(Lj−1(n− 2)(n2 + 2n+ 9)(n+ 1)(n+ 2)(n+ 3))2

so that (4.3) may be used to compute B.
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