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We examine scaling laws for dynamical hysteresis in an optically bistable semiconductor laser. An
analytic derivation of these laws from multidimensional laser equations is outlined and they are expected
to be universal for systems that exhibit a cusp catastrophe. The scaling laws for the hysteresis loop
area or width are numerically verified and experimentally measured for operation of the bistable laser
above and below threshold. Excellent agreement with theory is obtained in the limit of low switching

frequencies.

PACS numbers: 05.45.+b, 42.65.Pc

Hysteresis is ubiquitous in optical, electronic, magnetic,
and mechanical switching elements, and is of great prac-
tical concern as well as of fundamental scientific interest
[1—-4]. In fact, it has recently been demonstrated that hys-
teresis is present even in the most microscopic of systems:
the one-atom micromaser [S5]. The extent of hysteresis,
often measured by the width or area of the hysteresis loop
obtained when an appropriate system variable is plotted as
a function of the switching parameter, may depend on the
frequency of switching and also on the operating param-
eters of the switching element itself. Some of the basic
questions that remain to be explored are the regimes for
which certain scaling laws exist and whether the expo-
nents obtained for systems obeying diverse microscopic
dynamics are valid for others.

In this Letter we examine the bistable semiconductor
laser, a device that has been proposed as a basic switching
element for optical systems [1,6—9]. Starting from the
four-dimensional rate equations for this system, we derive
scaling laws for dynamical hysteresis in the limit of low
switching frequency. As described by these equations,
a laser undergoes a bifurcation at threshold. We predict
that the scaling exponents depend on where the bistable
laser is biased with respect to threshold. The analysis
suggests that the same exponents should also be valid
for other multidimensional systems that exhibit a cusp
catastrophe [10]. The predictions are verified numerically
and experimentally; the scaling exponents determined for
operation both above and below threshold are in excellent
agreement with theoretical predictions.

In the experimental system (Fig. 1) a single mode laser
field is injected close to resonance into a laser diode which
is biased around threshold. The strength of the external
injected field E.; is varied sinusoidally. The output of
the bistable laser then exhibits bistability and hysteresis.
Dagenais et al. have experimentally characterized the
adiabatic (or quasistatic) bistable behavior and hysteresis
in a similar system as a function of detuning between the
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injected field and a mode of the bistable semiconductor
laser, as well as of the operating point of the laser with
respect to threshold [6].
The dynamics of such a laser system is described by the
rate equations [7,8]
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where T is the complex amplitude of the internal sin-
gle mode electric field, N is the carrier number, and S
is the average photon number generated by spontaneous
emission into the lasing mode. Spontaneous emission is
necessary to describe laser operation below threshold and
is incorporated deterministically to facilitate the analytic
derivation outlined below. Alternatively, the influence of
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FIG. 1. Experimental setup of the bistable semiconductor

laser system with modulated external input. 71 and 72 are
temperature controllers, AOM is the acousto-optic modulator,
and D1 and D2 are photodetectors.
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spontaneous emission could be accounted for through sto-
chastic Langevin noise terms in the equation for £ and
N. The incident external electric field amplitude E.y; is
assumed to be of the form E, = E sin{)¢. The detuning
between the injected signal and the time-dependent laser
frequency is given by w; — w;, and Awy is the fixed de-
tuning between the frequencies of the external field and
the solitary laser. Because of this detuning the observed
hysteresis is primarily dispersive in nature and is related
to a change in the effective index of refraction of the gain
medium. Nj is the steady state carrier number when the
external field is zero and is obtained by solving (1) with
the time derivatives set to zero. It is a function of the in-
jection current /, and, of the two possible solutions for N,
the one corresponding to the stable fixed point is selected.
Table I lists the meaning and typical values of the other
parameters.

It is found that when E. is changed adiabatically,
hysteresis is observed in the laser intensity P, = |E|> +
S vs the injected intensity |Ees|?, when I is above a
critical value. For the purpose of the theoretical analysis,
this critical value is defined to be the threshold current I,.
In the graph of P, vs |Ew:|?> we examine the hysteresis
loop area as a function of the switching frequency ) for
different bias currents I close the I;,.

We predict that for sufficiently small (), the dynamical
hysteresis area A is given by

AQ) = Ay + COQB, )

where the static area Ap # O if and only if I > I;,, and B
is given by

1 forl < Iy,
4

B=153 for I = Iy, 3)
2 forl>1Iy.

Our analysis [11] shows that the scaling exponents in (3)
are universal for dynamical systems in which bistability
arises as a parameter crosses a phase transition point.
More precisely, (3) holds whenever one stable equilib-
rium point splits into three (two stable, one unstable) via
the generic mathematical mechanism called a cusp catas-
trophe [10].

TABLE I. Value of parameters.
T, 14 X 1072 s Photon lifetime
K 1.3 x 10" 57! Coupling constant
Ty 107% s Carrier lifetime
G, 1.93 X 10* s7! Differential gain
r 0.15 Confinement factor
@ 3 Linewidth enhancement factor
Cyp 107° Spontaneous emission
coupling ratio
n 3.5 Refractive index
Reff 4.1 Effective index
N, 1.33 X 108 Transparency carrier number
Awy —14 GHz Fixed detuning

We now outline the derivation of 8 = % for I = Iy;
this is the most delicate case. The first step is a center
manifold reduction of the full dynamics, which yields a
reduced equation of the form

x = —cx> + EsinQrt, (€))

where ¢ > 0. Let T = 27 /Q. For small (), there exists a
T -periodic, locally stable solution of (4), which we denote
z(r). Using a quasistatic approximation, one expects
z(1) = xo(1), where cxo(2)? = EsinQr. Let z(z) = xo(¢) +
u(z). Inserting z(¢) in (4) and making the approximations
lu] < |xo| and |it] < |xo|, we find u(r) =~ —x¢/3cx3 and
hence

—Q cosQt 5
I(Ec)/3(sinQe)*/3 ®)
Equation (5) can be used to show that the original
assumptions |u| << |xo| and |u| < |x¢| are self-consistent
if O < Q¢ =3(E2)'/? and sinQ¢ and cosQ: are not
too close to 0. To state the conditions precisely, let
k be a constant such that 1 < k < (Q/Q)%5 and let
70(Q) = k(E2Q2¢)"Y5. Let 71(Q) be defined such that
(cE)™ 3 «T/4 — 7, <T. Then we find [11] that
(5) is valid for 79 =t = 7;, where we have restricted
attention to the quarter cycle 0 = ¢ =< T /4; by symmetry,
(5) is valid on corresponding parts of the other quarter
cycles.

Next we calculate the area of the hysteresis loop [12]
defined by the plane curve (E sinQ¢,z(z)). The area is
A(Q) = |EQ [{ 2(t)cosQr dt|. Substitute z(t) = xo(f) +
u(t) and observe that the integral involving x¢(#) vanishes
because there is no static hysteresis for (4). Hence
AQ) = |EQ fg u(r) cosQr de|. Let A;(Q) denote the part
of the integral that comes from the intervals where (5)
is valid, and let A,(Q)) denote the remaining part. Then
substitution of (5) into the integral yields

u(t) =

4EQ? f" cos?( ¢

WE) )., (sinQn3 4
The dominant contribution to this integral comes from the
neighborhood of the lower limit, where sin{)z is small
and the integrand is large. To see this, note that Q 7y =
k(30 /Q0)*5 <« 1, where the inequality follows from the
definition of k. Furthermore, 7/2 — Q7 < 1, from the
definition of 7. Evaluating the integral to leading order
in Q, we find

A(Q) = ©)

4EYS s

A (Q) = WQ . )

The remaining area A,({)) cannot be calculated accu-
rately, since the approximation for u(z) breaks down, but
A>(Q)) can be proven to be bounded above by a quan-
tity which is itself of order O(c3/°E*5Q*5). Thus A(Q)
is strictly 0(Q%/%) for small Q, since it is bounded both
above and below by quantities of this order.

For I < I;,, the scaling law A(Q)) ~ Q is derived
by techniques similar to those above, but the analysis
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is more straightforward and can be carried out in a
multidimensional setting [11]; there is no need for a center
manifold reduction. For I > Iy, the result A(Q}) ~ Q273
follows from an extension of the techniques in [13].
There, the scaling exponent of % was obtained for the
one-dimensional equation x = ax — bx? + E sin{}¢, with
a,b > 0.

Numerical simulations of (1) were done to verify the
predicted scaling laws. The results are shown in Fig. 2,
where B is plotted as a function of the bias current of
the laser with respect to threshold. The exponent changes
from B8 = 1 below threshold to B8 = 0.6 above threshold.
The computations are extremely time consuming in the
low-frequency limit, since the time scales involved in the
equations range from picoseconds to tens of milliseconds.
The results shown in Fig. 2 are estimates of the exponents
obtained. The systematic errors are due to the difficulty of
accessing the extreme low-frequency limit. It should be
noted that the equation for spontaneously emitted photons
contributes dominantly below the solitary laser threshold.
Furthermore, the contribution of spontaneous emission to
P is significant around threshold but is not needed to
produce static hysteresis above threshold.

In the experiments (Fig. 1) the injected field was ob-
tained from a single frequency external cavity semicon-
ductor laser system. The bistable laser, and HLP 1400
Fabry-Pérot diode with wavelength A =~ 830 nm, was
temperature stabilized to better than 0.01 K and an optical
isolator prevented feedback into the external cavity laser.
A function generator was used with an acousto-optic mod-
ulator to sinusoidally vary the externally injected signal.
A half-wave plate insured that the polarization of the in-
jected signal matched that of the bistable laser. The spec-
trum of the output from the bistable laser was monitored
on an optical spectrum analyzer. The injected signal in-
tensity and the output intensity of the bistable laser were
detected using two fast photodiodes and recorded on a
digital oscilloscope interfaced to a computer.

We focused on measurements above and below thresh-
old, since it is extremely difficult to determine the laser
threshold precisely and maintain the laser at that point.
Figure 3(a) shows data for above threshold operation

(I/I, = 1.08). We note that the definition of thresh-
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FIG. 2. Numerically calculated scaling exponent B as a
function of the normalized bias current /1.
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old used in the experiments differs slightly from the
one mentioned above [14]. The half-widths H are de-
termined from measurements of many hysteresis loops,
and are used instead of loop areas since the loop height
remains constant. Hy, measured for a modulation fre-
quency v = 10 Hz, is taken as a good approximation to
the half-width of the static hysteresis loop. A log-log plot
of the low-frequency measurements is used to estimate the
scaling exponent as follows. Values of In(H — Hj) from
the lowest frequency to a chosen (), are plotted versus
In(Q2), as shown in Fig. 3(b), and an estimate of the scal-
ing exponent is obtained from a linear regression fit to
the data. Then, the highest-frequency point for the plot
is omitted, and the scaling exponent estimate is obtained
from the rest of the points. This procedure is followed
until the number of points in the plot is too small for a rea-
sonable linear fit. The results are shown in Fig. 3(c), from
which we estimate 8 = 0.62 in the low-frequency limit.
The data for operation below threshold (I/1;, = 0.94) are
plotted in Fig. 4(a). The width of the loop at the low-
est frequency of modulation (10 Hz) is much smaller than
that for above threshold operation. In this case the low-
frequency observations [Fig. 4(b)] indicate that 8 = 1.01.

H (arb. units)
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FIG. 3. Experimental results for the half-width of the hystere-
sis loop where the laser is pumped above threshold (//1, =
1.08). (a) Half-width of hysteresis loop as a function of modu-
lation frequency. (b) Estimation of the scaling exponent 8 by
linear regression. (c) Determination of the low-frequency limit
for B.
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any linearly stable steady state. Noise in the dynamical
system does not appear to play a significant role in the
regime investigated, but its inclusion may be relevant at
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FIG. 4. Experimental results for the half-width of the hystere-
sis loop where the laser is pumped below threshold (I/I;, =
0.94). (a) Half-width of hysteresis loop as a function of modu-
lation frequency. (b) Linear regression fit to low-frequency
data.

For higher frequencies (but not so high as to distort the
hysteresis loop), the scaling laws break down. This inter-
mediate regime extends over many orders of magnitude
of the switching frequency and further theoretical studies
need to be done to gain insight into the laws governing
this regime.

We note that several mean-field treatments of the
kinetic Ising model show a similar scaling behavior of
the hysteresis loop area at low frequencies [15]. Also,
the theoretical results reported here are not limited to
the system (1), but are valid for any bistable system in
which a cusp catastrophe occurs. Therefore these scaling
laws are of a universal nature and we expect the results
to be valid for other such multidimensional systems. In
particular, the subthreshold scaling law A(Q)) ~ Q is even
more general; it is valid for dynamical hysteresis about

still lower frequencies and for other systems.
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