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Lecture Notes 1

1 Definition of a regular embedded surface

The main objects of study in this class are regular surfaces in 3-space, and
Our main aim in this section is to give a precise and self-contained definition
for a regular embedded surface. The only background we assume is some
familiarity with elementary Calculus and Linear Algebra.

1.1 The Euclidean space

By R we shall always mean the set of real numbers. The set of all n-tuples of
real numbers R™ := {(p',... ,p") | p* € R} is called the Euclidean n-space.
So we have

peER™ < p=(p',...,p"), p'€R.

Let p and ¢ be a pair of points (or vectors) in R™. We define p + ¢ :=
(p* + ¢, ... ,p" + ¢"). Further, for any scalar r € R, we define rp :=
(rpt, ..., rp"). It is easy to show that the operations of addition and scalar
multiplication that we have defined turn R" into a vector space over the field
of real numbers. Next we define the standard inner product on R" by

{p,q) =p'q" + ... +p"q".

Note that the mapping (-,-): R” x R™ — R is linear in each variable and is
symmetric. The standard inner product induces a norm on R" defined by

Pl := (p,p)*2.

If p € R, we usually write |p| instead of ||p||.
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Exercise 1.1.1. (The Cauchy-Schwartz inequality) Prove that |(p, ¢)| <
IIp|| ||¢||, for all p and g in R™ (Hints: If p and g are linearly dependent the
solution is clear. Otherwise, let f(\) := (p — A\g,p — A¢). Then f(A) > 0.
Further, note that f(\) may be written as a quadratic equation in A. Hence
its discriminant must be negative).

The standard Euclidean distance in R" is given by

dist(p, q) := ||p — q||-

Note that (R",dist) is a metric space. This means that (i) dist(p,q) >
0, with equality if and only if p = ¢, (ii) dist(p,q) = dist(¢,p), and (iii)
dist(p, q) + dist(q,r) > dist(p, 7). These properties are called, respectively,
positive-definiteness, symmetry, and the triangle inequality.

Exercise 1.1.2. (The triangle inequality) Show that dist(p, ¢)+dist(g,r) >
dist(p,r) for all p, ¢ in R"™. (Hint: use the Cauchy-Schwartz inequality).

Finally, we define the angle between a pair of vectors in R" by

L (pa) '
lIpll []qll

Note that the above is well defined by the Cauchy-Schwartz inequality.

angle(p, q) := cos™

Exercise 1.1.3. (The Pythagorean theorem) Show that in a right tri-
angle the square of the length of the hypotenuse is equal to the sum of the
squares of the length of the sides (Hint: First prove that whenever (p, q) = 0,
IplI? + ll¢ll* = |lp — ¢||*. Then show that this proves the theorem.).

1.2 Open sets and continuous maps
An n-dimensional open ball of radius r centered at p is defined by
B! (p) :={z € R" | dist(z,p) < r}.

We say a subset U C R" is open if for each p in U there exists an € > 0 such
that B"(p) C U. Let A C R" be an arbitrary subset, and U C A. We say
that U is open in A if there exists an open set V' C R" such that U = ANV. A
mapping f: A — B between arbitrary subsets of R" is said to be continuous
if for every open set U C B, f~'(U) is open is A. Intuitively, we may think
of a continuous map as one which sends nearby points to nearby points. A
rigorous formulation of this is given in the following exercise:
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Exercise 1.2.1. Let A, B C R" be arbitrary subsets, f: A — B be a
continuous map, and p € A. Show that for every € > 0, there exists a 6 > 0
such that whenever dist(x,p) < ¢, then dist(f(z), f(p)) < e.

Two subset A, B C R" are said to be homeomorphic, or topologically
equivalent, if there exists a mapping f: A — B such that f is one-to-one,
onto, continuous, and has a continuous inverse. Such a mapping is called a
homeomorphism.

Definition 1.2.2. We say a subset M C R? is an embedded surface if
every point in M has an open neighborhood in M which is homeomorphic
to an open subset of R2.

Note that, as an immediate consequence of the above definition, an open
subset of a surface is a surface. It is not difficult to check that many of the
objects which are commonly called a surface satisfy the above definition.

Exercise 1.2.3. (Stereographic projection) Show that the standard sphere
S? := {p € R?® | ||p|| = 1} is an embedded surface (Hint: Show that the
stereographic projection 7, form the north pole gives a homeomorphism
between R? and S% — (0,0,1). Similarly, the stereographic projection m_

from the south pole gives a homeomorphism between R? and S* — (0,0, —1);
T T

(2,9, 2) = (%5,75,0), and 7_(z,9, 2) = (%, ;%,0))-
Exercise 1.2.4. (Surfaces as graphs) Let U C R? be an open subset and
f: U — R be a continuous map. Then

graph(f) := {(z,y, f(z,v)) | (z,y) € U}

is a surface. (Hint: Show that the orthogonal projection n(z,y, z) := (z,¥)
gives the desired homeomorphism).

Note that by the above exercise the cone given by z = /22 + 42, and the
troughlike surface z = |z| are examples of embedded surfaces. These surfaces,
however, are not regular, as we will define in the next section. From the point
of view of differential geometry it is desirable that a surface be without sharp
corners or vertices.



1.3 Smoothness and regularity

Let U C R™ be open, and f: U — R™ be a map. Note that f may be
regarded as a list of m functions of n variables: f(p) = (f'(p),..., f™(p)),
fi(p) = fi(p',...,p"). The first order partial derivatives of f are given by

fi(pl""’pj+h7'"7pn)_fi(p17""pj7""pn)

If all the functions D f': U — R exist and are continuous, then we say
that f is differentiable (C'). We say that f is smooth (C*) if the partial
derivatives of f of all order exist and are continuous. These are defined by

Djy, g, - jif" := Dj (D, (- -+ (Dji 1) -+ +)).

Let f: U € R®™ — R™ be a differentiable map, and p € U. Then the
Jacobian of f at p is an m X n matrix defined by

lel(p) - Dy f"(p)
Jp(f) == : :

We say that p is a regular point of f if the rank of J,(f) is equal to n. If f
is regular at all points p € U, then we say that f is regular.

Exercise 1.3.1. Let f: U € R? — R be a differentiable map. Show that
the mapping X: U — R?, defined by X (p',p?) := (p',p? f(p',p?)) is a
regular map.

Exercise 1.3.2. (The differential map) Let f: U C R®™ — R™ be a
differentiable map and p € U. Then the differential of f at p is a mapping
from R" to R™ defined by

f(p-i-tx)—f(p)'

dfy(z) := %g% ;
71
Show that (i) df,(z) = J,(f)| : |. Conclude then that (ii) df, is a linear
$n

map, and (iii) p is a regular value of f if and only if df, is one-to-one. Further,
(iv) show that if f is a linear map, then df,(z) = f(z), and (v) J,(f) coincides
with the matrix representation of f with respect to the standard basis.



1.4 Regular patches and surfaces

By a regular patch we mean a pair (U, X) where U C R*isopenand X: U —

R? is a mapping such that (i) X is one-to-one, (ii) X is smooth, and (iii) X

is regular. Furthermore, we say that the patch is proper if X! is continuous.
We are ready at last to define a regular embedded surface in R?:

Definition 1.4.1. We say a subset M C R? is a regular embedded sur-

face, if for each point p € M there exists a regular proper patch (U, X) and
an open set V C R? such that X(U) =M NV.

Note that X, as defined above, is a homeomorphism between U and
M NV. Thus a regular surface is indeed a surface as we had defined earlier
in Section 1.2. If M C R3 is a surface and (U, X) is as in the above definition,
then we say that (U, X) is a local parameterization for M at p.

Exercise 1.4.2. Let f: U C R? — R be a smooth map. Show that
graph(f) is a regular embedded surface, see Exercise 1.3.1.

Exercise 1.4.3. Show that S? is a regular surface (Hint: (Method 1) Let
p € S?. Then p!, p?, and p® cannot vanish simultaneously. Suppose, for
instance, that p*> # 0. Then, we may set U := {u € R? | ||u]| < 1}, and
let X (ut,u?) == (u',u?,£4/1— (u')2 — (u?)?) depending on whether p® is
positive or negative. The other cases involving p' and p? may be treated
similarly. (Method 2) Write the inverse of the stereographic projection, see
Exercise 1.2.3, and show that it is a regular map).

The following exercise shows that smoothness of a patch is not sufficient
to ensure that the corresponding surface is without singularities (sharp edges
or vertices). Thus the regularity condition imposed in Definition 1.4.1 is not
superfluous.

Exercise 1.4.4. Let M C R? be the graph of the function f(z,y) = |z|.
Sketch this surface, and show that there exists a smooth one-to-one map
X: R? — R3 such that X(R?) = M (Hint: Let X (z,y) == (e"'/*",y, e~ /7",
if > 0; X(z,y) = (—e /7" y,e7 /%) if X < 0; and, X (z,y) := (0,0,0), if
z =0).

The following exercise demonstrates the significance of the requirement
in Definition 1.4.1 that X! be continuous.



Exercise 1.4.5. Let U := {(u,v) e R* | -7 < u <7, 0 < v < 1}, define
X:U — R? by X(u,v) := (sin(u), sin(2u), v), and set M := X (U). Sketch
M and show that X is smooth, one-to-one, and regular, but X! is not
continuous.



