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Lecture Notes 4

3.2 Ratio of areas

In the previous subsection we gave a geometric interpretation for the sign
of Gaussian curvature. Here we describe the geometric significance of the
magnitude of K.

If V is a sufficiently small neighborhood of p in M (where M, as always,
denotes a regular embedded surface in R?), then it is easy to show that there
exist a patch (U, X) centered at p such that X(U) = V. Area of V is then
defined as follows:

Area(V) = / / 1DuX % Dy X[ duldu?.
U

Using the chain rule, one can show that the above definition is independent
of the the patch.

Exercise 3.2.1. Let VV C S? be a region bounded in between a pair of great
circles meeting each other at an angle of a. Show that Area(V') = 2«a/(Hints:
Let U := [0,a] x [0,7] and X (0, ¢) := (cos @ sin ¢, sin fsin @, cos ). Show
that [|[D;X x Do X|| = |sin¢g|. Further, note that, after a rotation we may
assume that X (U) = V. Then an integration will yield the desired result).

Exercise 3.2.2. Use the previous exercise to show that the area of a geodesic
triangle T C S? (a region bounded by three great circles) is equal to sum of
its angles minus 7 (Hints: Use the picture below: A+ B+ C + T = 27, and
A=20—-T,B=2—-T,and C =2y -T).

Let V, := B,(p) N M. Then, if r is sufficiently small, V(r) C X (U), and,
consequently, U, := X~!(V}) is well defined. In particular, we may compute
the area of V. using the patch (U,, X). In this section we show that
Area(n(V}))

K (p)| = r>0 Area(V})

!Last revised: February 17, 2000



Exercise 3.2.3. Recall that the mean value theorem states that [ [, fdu'du® =
f(a*,a?) Area(U), for some (@', u?) € U. Use this theorem to show that

Area(n(V;)) _ |D1N(0,0) x DoN(0,0)]|

r20 Area(V;)  |[DiX(0,0) x DyX(0,0)]
(Recall that N :=no X.)

Exercise 3.2.4. Prove Lagrange’s identity: for every pair of vectors v, w €

R3
2 __ <’U, U) <U: ’U)>
|lv x w||* = det (w, ) (w, w) ‘
Now set g(u',u?) := det[g;;j(u’,u?)]. Then, by the previous exercise it

follows that ||D;X(0,0) x Dy X (0,0)|| = 4/9(0,0). Hence, to complete the
proof of the main result of this section it remains to show that

1D1N(0,0) x DoN(0,0)[| = K(p)+/9(0,0).

We prove the above formula using two different methods:
METHOD 1. Recall that K(p) := det(S,), where S, := —dn,,: T,M — T,,M
is the shape operator of M at p. Also recall that D; X (0,0),i =1, 2, form a
basis for T,M. Let S;; be the coefficients of the matrix representation of S,
with respect to this basis, then

2
Sp(DiX) =" 8y D; X.
7j=1

Further, recall that N := n o X. Thus the chain rule yields:



Exercise 3.2.5. Verify the middle step in the above formula, i.e., show that
dn(D;X) = D;(n o X).

From the previous two lines of formulas, it now follows that
2

j=1
Taking the inner product of both sides with DN, k =1, 2, we get

2
(=D;N,DyN) = 5;(D;X, DyN).

j=1

Exercise 3.2.6. Let F', G: U C R? — R? be a pair of mappings such that
(F,G) = 0. Prove that (D;F,G) = —(F, D;G).

Now recall that (D;X, N) = 0. Hence the previous exercise yields:
<DjX, DkN> = —<ijX, N) = _lZJ

Combining the previous two lines of formulas, we get: (D;N, DyN) = Zzzl Siilik;
which in matrix notation is equivalent to

[(DiN, D;N)] = [Si][li;]-

Finally, recall that det[(D;N, DyN)] = ||DiN x D,N|?, det[S;;] = K, and
det[l;;] = Kg. Hence taking the determinant of both sides in the above
equation, and then taking the square root yields the desired result.

Next, we discuss the second method for proving that ||D;N x DyN|| =
K./g.
METHOD 2. Here we work with a special patch which makes the computa-
tions easier:

Exercise 3.2.7. Show that there exist a patch (U, X) centered at p such
that [g;;(0, 0)] is the identity matrix. (Hint: Start with a Monge patch with
respect to T, M)

Thus, if we are working with the coordinate patch referred to in the
above exercise, ¢(0,0) = 1, and, consequently, all we need is to prove that
||ID1N(0,0) x DoaN(0,0)|| = K(p).



Exercise 3.2.8. Let f: U C¢ R? — S? be a differentiable mapping. Show
that (D; f(u',u?), f(u',u?)) = 0 (Hints: note that (f, f) = 1 and differenti-
ate).

It follows from the previous exercise that (D; N, N) = 0. Now recall that
N(0,0) =noX(0,0) = n(p). Hence, we may conclude that N(0,0) € T,,M.
Further recall that {D;X(0,0), D2X(0,0)} is now an orthonormal basis for
T,M (because we have chosen (U, X) so that [g;;(0, 0)] is the identity matrix).
Consequently,

2
D;N =) (D;N, DyX)D; X,
k=1

where we have omitted the explicit reference to the point (0,0) in the above
formula in order to make the notation less cumbersome (it is important to
keep in mind, however, that the above is valid only at (0,0)). Taking the
inner product of both sides of this equation with D;N(0,0) yields:

2
(DiN,D;N) =Y (D;N,D;X){DX, D;N).

k=1

Now recall that <D1N, DkX> = —<N, DZ]X> = _ZU Slmllarly, <DkX, DJN> =
—lg;- Thus, in matrix notation, the above formula is equivalent to the fol-
lowing:

(DN, D;N)] = [l;;]*

Finally, recall that K (p) = det[l;;(0, 0)]/ det[g;;(0, 0)] = det[l;;(0, 0)]. Hence,
taking the determinant of both sides of the above equation yields the desired
result.

3.3 Product of principal curvatures

For every v € T,M with ||v|| = 1 we define the normal curvature of M at p
in the direction of v by

where v: (—¢,¢) — M is a curve with v(0) = p and 7/(0) = v.

Exercise 3.3.1. Show that k,(p) does not depend on 7.



In particular, by the above exercise, we may take v to be a curve which
lies in the intersection of M with a plane which passes through p and is
normal to n(p) X v. So, intuitively, k,(p) is a measure of the curvature of an
orthogonal cross section of M at p.

Let UT,M := {v € T,M | ||v|| = 1} denote the unit tangent space of M
at p. The principal curvatures of M at p are defined as

ki(p) == mvin k,(p), and ko(p):= max k,(p),

where v ranges over U7, M. Our main aim in this subsection is to show that

K(p) = ki(p)k2(p).

Since K (p) is the determinant of the shape operator S,, to prove the above
it suffices to show that ki (p) and ko(p) are the eigenvalues of S,,.

First, we need to define the second fundamental form of M at p. This is
a bilinear map IL,: T,M x T,M — R defined by

IL, (v, w) := (Sp(v), w).
We claim that, for all v € UT, M,

ky(p) = 1L, (v,v).

The above follows from the following computation

(Sp(v),v) = —(dny(v),v)
= —((n07)'(0),7(0))

Exercise 3.3.2. Verify the passage from the second to the third line in the
above computation, i.e., show that —((n o~)'(0),7'(0)) = {(n o~v)(0),~"(0))
(Hint: Set f(t) := (n(y(t)),7'(t)), note that f(¢) = 0, and differentiate.)

So we conclude that k;(p) are the minimum and maximum of IL,(v) over
UT,M. Hence, all we need is to show that the extrema of II, over UT,M
coincide with the eigenvalues of \S,,.

Exercise 3.3.3. Show that II, is symmetric, i.e., IL,(v, w) = I, (w, v) for all
v, w € T,M.



By the above exercise, S, is a self-adjoint operator, i.e, (S,(v),w) =
(v, Sp(w)). Hence S, is orthogonally diagonalizable, i.e., there exist orthonor-
mal vectors e; € T,M, ¢ = 1, 2, such that

Sp(ei) = )\161

By convention, we suppose that A\; < A,. Now note that each v € UT,M
may be represented uniquely as v = v'e; + v?e where (v')? + (v?)? = 1. So
for each v € UT,M there exists a unique angle 6 € [0, 27) such that

v(f) := cos fe; + sin fey;
Consequently, bilinearity of II, yields
I, (v(6),v(0)) = A1 cos® § + Ay sin® 6.

Exercise 3.3.4. Verify the above claim, and show that minimum and max-
imum values of II, are A; and A, respectively. Thus ki(p) = A, and
k2 (p) = )\2.

The previous exercise completes the proof that K(p) = ki(p)k2(p), and
also yields the following formula which was discovered by Euler:

ko(p) = ki(p) cos® 0 + ko(p) sin® 6.

In particular, note that by the above formula there exists always a pair
of orthogonal directions where k,(p) achieves its maximum and minimum
values. These are known as the principal directions of M at p.



