Time: 180min

FINAL

1. Find the following limits:

a)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x - 1}$$

$$\mathbf{b}) \lim_{x \to \infty} \frac{2x+1}{x^2+4}$$

- **2.** (a) State the ϵ - δ definition of limit. (b) Use this definition to prove that $\lim_{x \to -21} (3x - 1) = -64.$
- **3.** Use the definition of the derivative to find the derivative of $f(x) = x^2$.
- **4.** Find the maximum and minimum values of $f(x) = x^2 + 2x + 5$ over the interval [-2, 1].
- **5.** Sketch the graph of $f(x) = 2x^3 3x 10$. Find all the intervals where the function is increasing, decreasing, is concave up or concave down.
- **6.** Find the following integrals:

$$\mathbf{a}) \int \sin(2x-4) \, dx$$

a)
$$\int \sin(2x-4) dx$$
 b) $\int_0^1 x^2 (x^3+5)^9 dx$

7. (a) Estimate the area under the curve f(x) = 3x-1 over the interval (1,3)by dividing the interval into 4 equal subintervals and computing the area of the corresponding circumscribed polygon. (b) Find the exact value of the area under the curve by dividing the interval into n equal segments and computing the limit of the area of the corresponding polygon as $n \to \infty$.

- **8.** Find the area trapped between y = x + 4 and $y = x^2 2$.
- **9.** Let R be the region trapped by $y = x^3$, x = 3, and y = 0. Find the volume of the solid generated by revolving R about the x-axis.
- 10. Find all the work done in pumping all the oil (density $\delta=2$ pounds per cubic foot) over the edge of a cylindrical tank that stands on one of its bases. Assume that the radius of the base is 4 feet, the height is 10 feet, and the tank is full of oil.

Each problem is worth 10 points.