b I. NON-DEGENERATE FUNCTIONS

§2, Definitions and Lemmas.

The words "smooth" and "differentiable" will be used interchange-

o

ably to mean differentiable of class C The tangent space of a smooth
manifold M at a point p will be denoted by TMp. If g: M= N 1is a
smooth map with g(p) = 9, then the induced linear map of tangent spaces
will be denoted by g,: TMp e TNq.

Now let f be a smooth real valued function on a manifold M. A
point p € M is called a critical point of f if the induced map
fyt TMp —*T‘Rf(p) is zero. If we choose a local coordinate system
(x],...,xn) in a neighborhood U of p this means that

_of
ax™

>
Ox

1(p) = (p) =0

The real number f(p) is called a critical value of f.

We denote by M®  the set of all points x € M such that f(x) < a.

If a is not a critical value of f then it follows from the implicit
function theorem that M* is a smooth manifold-with-boundary. The boundary
f71(a) is a smooth submanifold of M.

A critical point p 1s called non-degenerate if and only if the

matrix

32¢
( dx o (p))

is non-singular. Tt can be checked directly that non-degeneracy does not
depend on the coordinate system. This will follow also from the following
intrinsic definition.

If p is a critical point of f we define a symmetric bilinear
functional fy, on TMP’ called the Hessian of f at p. If v,w € TMp
then v and w have extensions ¥ and # to vector fields. We let .

o~

Fex(V,W) = vp(ﬁ(f)), where WP is, of course, just v. We must show that

this is symmetric and well-defined. It is symmetric because

[V,W]p(f) -0

¥R - & (wr
5 )) - WL (( ))
where [¥,%] is the Poisson bracket of ¥ and ¥, and where [G,ﬁ]p(f) -0

Here w(f) denotes the directional derivative of f in the direction W.
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since f has p as a critical point.
Therefore f,y 1is symmetric. It is now clearly well-defined since
%b(%(f)) = v(¥(f)) 1is independent of the extension ¥ of v, while

ﬁp(?(f)) is independent of W.

If (x’,...,xn) is a local coordinate system and v = % ay ‘§T o’
3 - ox
Ww=2Xb., — D we can take W = I b. —év- where b. now denotes a con-
Joyxd Joyxd J
stant function. Then
2
fex (V,W) = v(W(f))(p) = v(X by, —§£) = a. b.-——éjir(lﬁ 3
J oxd i3 o axtex!
. 3%
so the matrix ( o (p)) represents the bilinear function f,, with
X X

d

respect to the basis '__T, yere, —=
ax' [P ax™

P

We can now talk about the index and the nullity of the bilinear
functional f,, on TMp. The index of a bilinear functional H, on a vec-
tor space V, 1s defined to be the maximal dimension of a subspace of V
on which H 1is negative definite; the nullity is the dimension of the null-
space, 1.e., the subspace consisting of all v € V such that H(v,w) = 0
for every w € V. The point p is obviously a non-degenerate critical
point of f if and only if f,, on TMp has nullity equal to 0. The
index of fy,, on TMp will be referred to simply as the index of f at p.
The Lemma of Morse shows that the behaviour of f at p can be completely
described by this index. Before stating this lemma we first prove the

following:

IEMMA 2.1. Let f be a C% function in a convex neigh-
borhood V of o0 in R%, with f(0) = 0. Then
n
f(xI,...,xn) = 25 xigi(x1,...,xn)
i-1
for some suitable C® functions g; defined in V, with

g (0) - %;i(m.

PROOF: ; in
ar(tx,,...,tx.)
12 2 n of
f(x1,...,xn) = Jr g dt = JP 25 BE.(tX1""’tXn)'Xi dat
0 0 i=1 T
1
Therefore we can let gi(x1,...,xn) = ]1 g% (tx1,...,txn) dat
i

0
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IEMMA 2.2 (Lemma of Morse). Let D be a non-degenerate
critical point for f. Then there is a local coordinate

system (y .,yn) in a neighborhood U of p with
vHp) =0 for w11 1 and such that the identity
2 n, 2
£of) - (32 e - P D e D

holds throughout U, where M is the index of f at p.

PROOF: We first show that if there is any such expression for f,
then A must be the index of f at p. For any coordinate system
(z1,...,zn), if

A1 2
@) = £(p) - (21(@)2 e - @) e (@) v s (2H)
then we have
-2 if 1 =J< M2,
°r

g—i—a—j(p)= 2 if 1 =3>>»,
Z Z

0 otherwise ,

which shows that the matrix representing f,, with respect to the basis

3 d

5,7 P A D is

"2

Therefore there is a subspace of TMp of dimension A where fy, 1s nega-
tive definite, and a subspace V of dimension n-x where f,, 1s positive
definite. If there were a subspace Of TMp of dimension greater than
on which f,, were negative definite then this subspace would intersect V,
which is clearly impossible. Therefore X is the index of fiyy.

We now show that a suitable coordinate system (y1,...,yn) exists.
Obviously we can assume that p 1is the origin of R® and that f(p) = £(0)

By 2.1 we can write
n

n) = Z xjgj(x1,...,xn)
j= 1

for (x1,...,xn) in same neighborhood of 0. Since 0 1s assumed to be a

critical point:
g.(0) = —(0) =0
J X

§2. DEFINITIONS AND LEMMAS T

Therefore, applying 2.1 to the gj we have

n
gj(x1,...,xn) = 25 Xihij(x1""’xn)
i=1

for certain smooth functions hij' It follows that
n
f(x],...,xn) = 25 xlihlJ( ...,xn)
i,]=1
We can assume that hij = hji’ since we can write ﬁij = —(h. 3* h

and then have Eij = h,. and f = 2 x.x,h,

jl 3550y 5 Moreover the matrix (ﬁi (o))

is equal to ; - 1 - J( )) d hence is non-singular.

There is a non-singular transformation of the coordinate functions
which gives us the desired expression for f, in a perhaps smaller neigh-
borhood of 0. To see this we just imitate the usual diagonalization proof
for quadratic forms. (See for example, Birkhoff and Maclane, "A survey of
modern algebra,” p. 271.) The key step can be described as follows.

Suppose by induction that there exist coordinates u u in

paeeesUy
a neighborhood U1 of 0 so that

2 2
f=+ (u1) + oee. (ur_1) + E iuJHlj ,un)
i,j>r

throughout U,; where the matrices (Hij(u1""’un)) are symmetric. After

a linear change in the last n-r+1 coordinates we may assume that Hrr(o) # 0.

Let g(u;,...,u,) denote the square root of IHfr(u1,.. w)|. This will

Uy
be a smooth, non-zero function of u,,...,u, throughout some smaller neigh-

borhood U, C U; of 0. Now introduce new coordinates v,,...,v, by

vy o= uy for i £ r

vy, .ee,u) = g(u1,...,un)[ur + zi uH (g, .,un)/Hfr(u1,...,un)}.

It follows from the inverse function theorem that v,,.. will serve as

o,V
’'n
coordinate functions within some sufficiently small neighborhood U3 of o0.
It is easily verified that f can be expressed as

2
= 25 * (vi) + 25 vleHlJ(v .,vn)
ilr

i,j>r
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throughout U3. This completes the induction; and proves Lemma 2.2.

COROLLARY 2.3 Non-degenerate critical points are isolated.

Fxamples of degenerate critical points (for functions on R and

R2) are given below, together with pictures of their graphs.

\

(d) f(x,y) = x2. The set of critical points, all of which

are degenerate, is the x axis,

which is a sub-manifold of RZ,

_ 2

(a) f(x) = x3. The origin (b) F(x) = e 1/x sin?(1/x)
is a degenerate critical point. The origin is a degenerate, and
non-isoclated, critical point.

(e) f(x,y) = xgyg. The set of critical points, all of which are
degenerate, consists of the union of the x and 7y axis, which is

not even a sub-manifold of RE.
We conclude this section with a discussion of 1-parameter groups of

diffeomorphisms. The reader is referred to K. Nomizu,"Lie Groups and Differ-

ential Geometry,' for more details.
of diffeomorphisms of a manifold M is a C®

A 1-parameter group

map

(¢) f(x,y) = % - 3xy2 = Real part of (x + iy)3.
¢: RxM —-M

(0.0) 1is a degenerate critical point (a2 "monkey saddle").
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such that
1) for each t € R the map 9yt M = M defined by
@t(q) - o(t,q) is a diffeomorphism of M onto itself,
2) for all t,s € R we have Prys = Pp ° 9q

Given a 1-parameter group ¢ Of diffeomorphisms of M we define

a vector field X on M as follows. For every smooth real valued function

f let
Lim  Tloyla) - £(@

XgH = nso 2

This vector field X is said to generate the group o.

TEMMA 2.4. A smooth vector field on M which vanishes
outside of a compact set K C M generates a unique 1-
parameter group of diffeomorphisms of M.

PROOF: Given any smooth curve

t —c(t) el

it is convenient to define the velocity vector

de
TE € TMc(t)
by the identity %%(f) = h}iﬁo §9£E:E%;£9£EL . (Compare §8&.) Now let o

be a 1-parameter group of diffeomorphisms, generated by the vector field X.
Then for each fixed q the curve

t = gy (a)
satisfies the differential equation

do, (@)
s GO

with initial condition mo(q) = g. This is true since

d ) : ( (@) - flo (a)) : floy(P)) - £(P)
%9 _ ?44nld . % ~1im Tlon Cx(n

-~ h—oO h je)

where p = @t(q). But it is well known that such a differential equation,

locally, has a unique solution which depends smoothly on the initial condi-

tion. (Compare Graves, "The Theory of Functions of Real Variables,' p. 166.
Note that, in terms of local coordinates u1,...,un, the differential equa-
i .
. 1 .
tion takes on the more familiar form: %%%— - xT(u ,...,un), i=1,...,n.)
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Thus for each point of M there exists a neighborhood U and a
number € > 0 so that the differential equation

do(q)
—3F— = XQt(q), o,(a) = a
has a unique smooth solution for q € U, |t] < e.

The compact set K can be covered by a finite number of such
neighborhoods U. Let €y > 0 denote the smallest of the corresponding
numbers e. Setting mt(q) =q for g ¢ K, it follows that this differen-
tial equation has a unique solution mt(q) for |t < e, and for all
q € M. This solution is smooth as a function of both variables. Further-
more, it is clear that o, o = 9, o ¢y providing that lel,1sl, le+s] < eg.
Therefore each such P is a diffeomorphism.

It only remains to define o for |[t| > e,. Any number t can
be expressed as a multiple of 50/2 plus a remainder r with |[r| < 50/2 .

If t = k(so/Q) +r with k> 0, set

Pyp = @ ° ° .. ° °
t £,/2 ‘peo/e Pey/2 " Or
where the transformation P /2 is iterated k times. If k < o0 it is
0

only necessary to replace bso/z by Y_e /2 iterated -k times. Thus P
0

is defined for all values of t. It is not difficult to verify that D¢ is

well defined, smooth, and satisfies the condition Op,g = P ° Oy - This

completes the proof of Lemma 2,4

REMARK: The hypothesis that X vanishes outside of a compact set
cannot be omitted. For example let M be the open unit interval (0,1) CR,
and let X be the standard vector field é% on M, Then X does not

generate any 1-parameter group of diffecmorphisms of M.
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§3. Homotopy Type in Terms of Critical Values.

Throughout this section, if f 1s a real valued function on a

manifold M, we let
M - £ (- w,al = (peM: f(p) < al

THEOREM 3.1. Tet f be a smooth real valued function
on a manifold M. Let a < b and suppose that the set
f_1[a,b], consisting of all p e M with a < f(p) < b,
is compact, and contains no critical points of f. Then
M® is diffeomorphic to M. Furthermore, M* is a de-
formation retract of Mb, so that the inclusion map

M - Mb is a homotopy equivalence.

The idea of the proof is to push Mb down to

nal trajectories of the hypersurfaces f - constant. (Compare Diagram 2.)

Diagram 2.

Choose a Riemannian metric on M; and let <X,¥> denote the

inner product of two tangent vectors, as determined by this metric. The

gradient of £ is the vector field grad f on M which is characterized

by the identity
<X, grad £> = X(f)

(= directional derivative of f along X) for any vector field X. This

vector field grad f vanishes preciseﬁy at the critical points of f. TIf

. 1 n
Tn classical notation, in terms of local coordinates u ,...,u’, the

gradient has components X gt -3
J ou

M along the orthogo-
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c:R—=M is a curve with velocity vector %%» note the identity

<§ﬁc , grad £> = Td(f"c)
Iet p: M= R be a smooth function which is equal to
1/ < grad f, grad £> throughout the compact set f'l[a’b]; and which vanishes
outside of a compact neighborhood of this set. Then the vector field X,
defined by

Xy = e(q) (grad f)q

satisfies the conditions of Iemma 2.4. Hence X generates a 1-parameter
group of diffeomorphisms

Pyt M — M.

For fixed q € M consider the function t — f(mt(q)). Iir @t(q)

lies in the set f"[a,b], then
df (g (a)) dpy (a)
3T = {—Fg— , erad > = <X, grad £> = + 1.

Thus the correspondence
t = £ ()

is linear with derivative +1 as long as f(@t(q)) lies between a and b.
Now consider the diffeomorphism g’ M— M. Clearly this carries
M diffeomorphically onto Mb. This proves the first half of 3.1.

Define a 1-parameter family of maps

by
a if £(q) < a

Pp(a-r(q)) (W 1f a <@ <D

Then r, 1is the identity, and =r

o . is a retraction from Mb to M*. Hence

M is a deformation retract of Mb. This completes the proof.

REMARK: The condition that f'1[a,b] is compact cannot be omitted.
For example Diagram 3 indicates a situation in which this set is not compact.
The manifold M does not contain the point p. Clearly M* is not a de-

formation retract of Mb.
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Diagram 3.

THEOREM 3.2. Let f: M—R be a smooth function, and let
p be a non-degenerate critical point with index . Set-

ting f(p) = ¢, suppose that f_1[c-e,c+5] is compact,
and contains no critical point of f other then p, for
some € > 0. Then, for all sufficiently small e, the set
MC*®  has the homotopy type of MC~® with a r-cell attached.

The idea of the proof of this theorem is indicated in Diagram U,

for the special case of the height function on a torus. The region
e - f_1(-m,c—s]

is heavily shaded. We will introduce a new function F: M — R which

coincides with the height function f except that F < f in a small neigh-
borhood of p. Thus the region 7' (-w,c-e] will consist of Me®  to-
gether with a region H near p. In Diagram 4, H is the horizontally

shaded region.

Diagram L.
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Choosing a suitable cell et ¢ H, a direct argument (i.e., push-
ing in along the horizontal lines) will show that MCEy & is a deformation
retract of M°® y H. Finally, by applying 3.1 to the function F and the
region F_1[c-s,c+e] we will see that M®™® u H is a deformation retract
of MY, This will complete the proof.

Choose a coordinate system u1,...,un in a neighborhood U of p

so that the identity
foc- (e oo WhHB s WMhH w2
holds throughout U. Thus the critical point p will have coordinates
w'(p) = .= u(p) =0 .

Choose & > 0 sufficiently small so that

N -1
(1) The region f~ [c-e,c+e] 1is compact and contains no critical
points other than p.
(2) The image of U wunder the diffeomorphic imbedding

1 n):

(u',...,u U —R"

contains the closed ball.

. T wh?<ee)

. r
Now define e to be the set of points in U with
whHZe e wh? < e and M WB o,
The resulting situation is illustrated schematically in Diagram 5.

(uh I, ...y uM) -axis

- (u', ..., uN)-axis

Diagram 5.
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AT n I coincide. Within this ellipsoid we have
+

i = = =0 d
The coordinate lines represent the planes u = .. U arn o 1§+ .
u1 = vt -o respectively; the circle represents the boundary of the < f = < sten <
= oo = = ! |
ball of radius ~2e; and the hyperbolas represent the hypersurfaces f (c-€) This completes the proof.
. 1
and ™' (c+e). The region MC~®  is heavily shaded; the region f~ [c-g,c] ASSERIION 2. The oritical peinte of ¥ are the same as thous of ¢

. -1 i i 1y dotted. The hori-
is heavily dotted; and the region f~ [c,c+e] 1s lightly do PROOF: Note that

A
zontal dark line through p represents the cell e . .

<A - -1 = “‘(§+2n) <0
Note that e n M°% s precisely the boundary &%, so that e 5t
c-€ Ao
is attached to M®~€ as required. We must prove that M u e is a de- g% et s
formation retract of MetE, N
nce
Construct a new smooth function F: M —— R as follows. Let . X
N dr - e + & g
S Jn 9N
p: R R n

where the covectors de¢ and dn are simultaneously zero only at the origin,
L 1 i i ditions
be a C° function satisfying the condi it follows that F has no critical points in U other than the origin.

p(o) > e Now consider the region F_1[c—e,c+e]. By Assertion 1 together

p(r) =0 for > 2e with the inequality F < f we see that

- ! o for all r ) ]
1< w'(r) < , F ' loe,0ee] C £ lo-e o]
dp ide with f outside of the coordinate

woere b T en R e ) Therefore this region is compact. Tt can contain no critical points of F

neighborhood U, and let except possibly p. But

F=f - u((u1)2+...+(ux)2 + 2(ux+1)2+...+2(un)2) '} F(p) =c - pn(0) <c - &

within this coordinate neighborhood. It is easily verified that F 1is a Hence F-1[c—e,c+e] contains no critical points. Together with 3.1 this

well defined smooth function throughout M. proves the following.

3 i t functions -
Tt is convenient to define two ASSERTION 3. The region F~ (-w,c-e] is a deformation retract of

t,n: U—— [0,w) MCHE
by o A D Tt will be convenient to denote this region F_1(—w,c—s] by
= e+ (WD) _ _ B
t (u)™+ noo M€ U H; where H denotes the closure of F 1(—oo,c—a] - MCE
n = (ux+])2 o + (U

e . REMARK: 1In the terminology of Smale, the region MCE L H is
Then f = ¢ - & + n; so that:

described as M°™® with a "handle" attached. It follows from Theorem 3.1
_c - - + 2n(q)) -
F(a) = c - e(a) + n(a) (e(a) that the manifold-with-boundary M®™® ( H is diffeomorphic to MC*®. This

for all g € U. fact is important in Smale's theory of differentiable manifolds. (Compare

ASSERTION 1 The region F'1(—m,c+e] coincides with the region S. Bmale, Generalized Poincaré's conjecture in dimensions greater than four,

MeHE _ T w,ceel. Annals of Mathematics, Vol. Tk (1961), pp. 391-L06.)

PROOF: Outside of the ellipsoid & + 2q < 2e the functions f and
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Now consider the cell e consisting of all points a with

t(a) < e, n(a) =0.

OF
Tn fact, since ¢ <0,

Note that e is contained in the "handle" H.

we have

F(q) < F(p) < c-€

A
put f(q) > c-e for q €€

Diagram 6.

The present situation is illustrated in Diagram 6. The region

il 1 ical arrows;
MC™® 1is heavily shaded; the handle H 1is shaded with vertica

and the region P 'lc-e,c+e] 1is dotted.
c-€
ASSFRTTON 4. MCE y e is a deformation retract of M v H.
. c-€ c-€ is
PROOF: A deformation retraction Ty: M vH - M v H

e vertical arrows in Diagram 6. More precisely

within U as fol-

indicated schematically by th

let vy pbe the identity outside of U; and define Ty

lows It in necessary to distinguish three cases as indicated in Diagram T.

i to the trans-
CASE 1. Within the region & < € let vy correspond to

formation

(u1,...,un) - (u,...u ", ...t
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CASE 3 CASE 3

CASE\E»\\J

Diagram 7. -

v//~62252

Thus v, 1is the identity and rj maps the entire region into e". The

fact that each r, maps F'1(—m,c—s] into itself, follows from the in-
R OF
1it 0.
equality D) >
CASE 2. Within the region e < ¢t < + ¢ let T correspond to
the transformation

1 n 1
(u,...,u) = (u,...,u

where the number s, € [0,1] is defined by

s =t + (1—t)((§—€)/n)1/2

Thus T, is again the identity, and r maps the entire region into the

0
hypersurface f_1(c—s). The reader should verify that the functions stul

remain continuous as ¢ — e, n — 0. Note that this definition coincides

with that of Case 1 when ¢ = €.

CASE 2. Within the region n + e < t (i.e., within MC™®%) 1et

Ty be the identity. This coincides with the preceeding definition when
E =n+ E.

c-€ x

This completes the proof that M ue is a deformation retract

of F71(—m,c+e]. Together with Assertion 3, it completes the proof of

Theorem 2.2.

REMARK 3.3. More generally suppose that there are k non-degenerate

A in f71(c). Then a
hy A
07eue1u...uek.

critical points Py,+--,P, with indices Mpseeey

k

C*®  has the homotopy type of M

similar proof shows that M



