
h-PRINCIPLES FOR CURVES AND KNOTS
OF CONSTANT CURVATURE

MOHAMMAD GHOMI

Abstract. We prove that C∞ curves of constant curvature satisfy, in the sense
of Gromov, the relative C1-dense h-principle in the space of immersed curves in
Euclidean space Rn≥3. In particular, in the isotopy class of any given C1 knot

f there exists a C∞ knot ef of constant curvature which is C1-close to f . More

importantly, we show that if f is C2, then the curvature of ef may be set equal
to any constant c which is not smaller than the maximum curvature of f . We

may also require that ef be tangent to f along any finite set of prescribed points,
and coincide with f over any compact set with an open neighborhood where f
has constant curvature c. The proof involves some basic convexity theory, and
a sharp estimate for the position of the average value of a parameterized curve
within its convex hull.

1. Introduction

In this work we show that any smooth (C∞) curve immersed in Euclidean space
Rn≥3, may be deformed to one with constant curvature by an arbitrarily small
perturbation of the curve and its tangent lines. Thus we may say that there exists no
“visual difference” between an arbitrary smooth curve and a curve whose curvature
is constant. Further we show that this constant may take on any value not smaller
than the maximum of the curvature of the initial curve, which, as we verify in the
appendix, is the optimal lower bound.

To state our main result precisely, we let Γ stand for either an interval [a, b] ⊂ R,
or a topological circle R/(b − a)Z, and let Cα(Γ,Rn) be the space of maps, or
curves, f : Γ → Rn whose derivatives f (i) exist and are continuous for 0 ≤ i ≤ α.
The standard norm on Cα(Γ,Rn) is denoted by

(1) ‖f‖α := sup
{ ∣∣f (i)

j (t)
∣∣ ∣∣∣ t ∈ Γ, 1 ≤ i ≤ α, 1 ≤ j ≤ n

}
,

where fj are component functions of f . For α ≥ 1, the space of immersions
Immα(Γ,Rn) ⊂ Cα(Γ,Rn) consists of those curves with nonvanishing speed ‖f ′‖.
We say that f0, f1 ∈ Imm1(Γ,Rn) are regularly homotopic if there exists a one pa-
rameter family of curves ft ∈ Imm1(Γ,Rn), t ∈ [0, 1], such that t 7→ ft is continuous
with respect to the C1-norm ‖ · ‖1. Then ft is called a regular homotopy between f0

and f1. If α ≥ 2, the curvature of f ∈ Immα(Γ,Rn) is defined as

κ :=
‖T ′‖
‖f ′‖

, where T :=
f ′

‖f ′‖
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is the tantrix of f . The space of embeddings Embα(Γ,Rn) ⊂ Immα(Γ,Rn) is the
collection of those curves which are one-to-one. A pair of embeddings f0, f1 ∈
Emb(Γ,Rn) are (regularly) isotopic if they can be joined by a regular homotopy of
embeddings ft ∈ Emb(Γ,Rn).

Theorem 1.1. Let f0 ∈ Immα≥2(Γ,Rn≥3) be an immersed curve with curvature
κ0. Then for any ε > 0, and c ≥ max[κ0], there exists a regular homotopy ft ∈
Immα(Γ,Rn), t ∈ [0, 1], such that ‖f0 − ft‖1 ≤ ε for all t, and f1 has constant
curvature c. If f0 is an embedding, then (choosing ε sufficiently small) we may
require that ft be an isotopy. Further, we may require that ft remain tangent to f
along any finite set of prescribed points of Γ. Furthermore, we may keep ft fixed on
any compact subset of Γ which has an open neighborhood where κ0 = c.

An embedding f ∈ Emb(Γ,Rn) is a knot when Γ is a circle. Since embeddings
are open in C1(Γ,Rn), the above theorem implies that there exists a C∞ knot of
constant curvature in each isotopy class of knots. The first explicit construction
for C2 knots of constant curvature are due to Koch and Engelhardt [8], who spliced
together segments of helices; see also [9] where this method was used to obtain C2

knots in each isotopy class, and [2] where C∞, even analytic, knots were constructed
in some isotopy classes; however, these results do not include approximations of the
type we discuss here, nor do they yield C∞ knots in each isotopy class.

The methods we use here have the flavor of “convex integration” techniques which
are used to prove some manifestations of the “h-principle”. Indeed, in the terminol-
ogy of Gromov [6], see also Eliashberg-Mishachev [1] or Spring [11], we show that
curves of constant curvature satisfy the relative C1-dense h-principle in the space
of Cα≥2 immersions. Yet we do not appeal to, nor are we aware of, any general
h-principle theorems which may be immediately relevant; instead, we give a direct
proof which is for the most part constructive.

The general outline for proving Theorem 1.1 is as follows. We may assume that
the initial curve f0 has unit speed. Then κ0 = ‖T ′0‖, i.e., the curvature of f0 is the
speed of its tantrix T0 : Γ → Sn−1 . To find f1 we use some basic convexity theory
to construct a curve T1 : Γ → Sn−1 which (i) has constant speed, (ii) is C0-close to
T0, and most importantly (iii) has the same total integral (the first two conditions
are fairly easy to achieve; however, the third condition requires more care). Then
f1(t) := f0(a) +

∫ t
a T1(s) ds has constant curvature, is C1 close to f0, and coincides

with f0 on the end points of Γ. The desired homotopy is then given by the linear
interpolation ft := (1−t)f0+tf1. To obtain the precise lower bound for the curvature
of f1 we need to show that the speed of T1 can be set equal to any constant not
smaller than the maximum speed of T0. This requires a sharp estimate, which we
obtain in Section 2 below, for the position of the average value of a curve in relation
to its center of mass.

As we plan to show in a sequel to this work, the methods developed here may
also be used to prove parametric versions of the h-principle for curves and knots of
constant curvature. This would provide analogues to theorems of Feldman [3] and
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Gluck and Pan [5], see also [4], who studied, respectively, the regular homotopy and
isotopy of closed curves with nonvanishing curvature.

2. Averages and Centers of Mass of Curves

For any set X ⊂ Rn, let relint convX denote the relative interior of the convex
hull of X. We recall that p ∈ relint convX if and only if X lies on both sides of any
hyperplane H ⊂ Rn which passes through p and does not contain X. The average
of a curve f ∈ C0([a, b],Rn) is defined as

ave[f ] :=
1

b− a

∫ b

a
f(t) dt.

Let relint conv[f ] denote the relative interior of the convex hull of f([a, b]).

Lemma 2.1. For any f ∈ C0([a, b],Rn), ave[f ] ∈ relint conv[f ].

Proof. Let u ∈ Sn−1, and set

g(t) :=
〈
f(t)− ave[f ], u

〉
.

Then
∫ b
a g(t) dt = 0. Thus, since f and consequently g is continuous, either g vanishes

everywhere or else it changes sign. Let

Hu :=
{
p ∈ Rn |

〈
p− ave[f ], u

〉
= 0

}
be the hyperplane passing through ave[f ], and orthogonal to u. Then it follows that
either f([a, b]) lies entirely in Hu or lies on both sides of Hu, which completes the
proof. �

For f ∈ C1([a, b],Rn) let cm[f ] be the center of mass or geometric average of f ,
i.e.,

cm[f ] :=
1

length[f ]

∫ b

a
f(t)‖f ′(t)‖ dt,

where

(2) length[f ] :=
∫ b

a
‖f ′(t)‖ dt.

Note that if g : [c, d] → Rn is any reparameterization of f , i.e., there exists a diffeo-
morphism θ : [c, d] → [a, b] such that g = f ◦ θ, then cm[g] = cm[f ]. The following
observation is also immediate:

(3) ave[f ] = cm[f ], when ‖f ′‖ = const.

The main aim of this section is to estimate the distance between the average of a
curve and its center of mass (when the speed of the curve is not constant). To this
end, for any (density) function ρ ∈ C0([a, b],R) and f ∈ Imm1([a, b],Rn) we define

cm[f, ρ] :=

∫ b
a f(t)ρ(t)‖f ′(t)‖dt∫ b

a ρ(t)‖f ′(t)‖dt
.
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Thus cm[f, ρ] = cm[f ] when ρ ≡ 1. Furthermore note that

(4) ave[f ] = cm
[
f,

1
‖f ′‖

]
.

Conversely, we can show

Lemma 2.2. For any f ∈ Imm1([a, b],Rn) and ρ ∈ C0([a, b],R) such that ρ > 0
there exists a C1diffeomorphism θ : [c, d] → [a, b] such that

cm[f, ρ] = ave[f ◦ θ].

Proof. Note that by (4) we have

ave[f ◦ θ] = cm
[
f ◦ θ, 1

‖(f ◦ θ)′‖

]
.

Further, since the center of mass is invariant under reparameterizations,

cm[f, ρ] = cm[f ◦ θ, ρ ◦ θ],
for any diffeomorphism θ : [c, d] → [a, b]. Thus, for the left hand side of the last two
equations to be equal, we need to have

ρ ◦ θ =
1

‖f ′(θ) · θ′‖
,

which is equivalent to

ρ =
1

‖f ′ · θ′(θ−1)‖
=
|(θ−1)′|
‖f ′‖

.

Hence if we define (the mass function) m : [a, b] → R by

m(t) :=
∫ t

a
ρ(u)‖f ′(u)‖du,

then θ := m−1 : [0,m(b)] → [a, b] is the desired mapping. In particular note that
since by assumption ρ is continuous and ρ > 0, m is C1 on [a, b] and m′ never
vanishes. So θ is well-defined and is C1. �

The last two lemmas may now be combined to obtain the following result. It
gives conditions for the center of mass of a curve with nonconstant density to lie in
the relative interior of the convex hull of the curve. We say H is a proper support
hyperplane of a set X ⊂ Rn provided that X lies on one side of H, and intersects
H at some point, but is not contained entirely in H. The support of a function f ,
i.e., the closure of the set of points where f 6= 0, is denoted by supp[f ].

Lemma 2.3. For any f ∈ Imm1([a, b],Rn) and ρ ∈ C0([a, b],R) such that ρ ≥ 0
and ρ 6≡ 0,

(5) cm[f, ρ] ∈ conv[f ].

Furthermore, if there exists no proper support hyperplane of f([a, b]) which contains
f(supp[ρ]), then

(6) cm[f, ρ] ∈ relint conv[f ].
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Note that the last condition in the above lemma is essential, for if there exists a
proper support hyperplane H of f([a, b]) which contains f(supp[ρ]), then cm[f, ρ]
lies in H and therefore cm[f, ρ] 6∈ relint conv[f ].

Proof. By Lemmas 2.1 and 2.2, cm[f, ρ + ε] ∈ conv[f ] for any ε > 0. Thus since
cm[f, ρ + ε] converges to cm[f, ρ] as ε gets smaller, and conv[f ] is compact, (5)
follows. Next note that we may assume int conv[f ] 6= ∅, for otherwise we may
reduce the dimension of Rn, after an affine transformation. Let H be a support
hyperplane of f([a, b]). Then f([a, b]) cannot lie entirely in H. Consequently, by
assumption f(supp[ρ]) cannot lie entirely in H either. Thus after a rigid motion we
may assume that H coincides with the hyperplane of the first n− 1 coordinates in
Rn and f(supp[ρ]) lies above H. Then 〈f(t)ρ(t), en〉 is not identically zero, where
en := (0, 0, . . . , 1). Thus 〈cm[f, ρ], en〉 > 0. So cm[f, ρ] cannot lie in H. Since H was
chosen arbitrarily, we conclude that cm[f, ρ] cannot lie in any support hyperplane
of conv[f ] and therefore must be an interior point. �

Finally we are ready to prove the main result of this section. Note that if X ⊂ Rn

is any subset and p ∈ X, then, for any λ ∈ [0, 1],

λp+ (1− λ)X :=
{
λp+ (1− λ)x | x ∈ X

}
gives the contraction of X by a factor of (1− λ) about p. The following result gives
the smallest factor for the contraction of the convex hull of a curve about its center
of mass to contain the average value of the curve.

Proposition 2.4. Let f ∈ Imm1([a, b],Rn). Then,

(7) ave[f ] ∈ λ cm[f ] + (1− λ) conv[f ],

for any constant

0 ≤ λ ≤
ave

[
‖f ′‖

]
max

[
‖f ′‖

] .
Furthermore,

(8) ave[f ] ∈ λ cm[f ] + (1− λ) relint conv[f ]

if either

0 ≤ λ <
ave

[
‖f ′‖

]
max

[
‖f ′‖

] ;

or else, there exists no proper support hyperplane of f([a, b]) which contains
f
(
supp

[
max

[
‖f ′‖

]
− ‖f ′‖

])
.

Proof. Note that if we define f̃ ∈ Imm1([0, 1],Rn), by f̃(t) := f(a+(b−a)t)/(b−a),
then f̃ ′ = f ′, while ave[f̃ ] = ave[f ]/(b − a), cm[f̃ ] = cm[f ]/(b − a), and conv[f̃ ] =
conv[f ]/(b − a). Thus (7) holds for f if and only if they holds for f̃ . So, for
convenience, we may assume that a = 0 and b = 1. Further, after a dilation of Rn

we may assume that length[f ] = 1, which forces ave ‖f ′‖ = 1. Also note that if (7)
holds for some f , then it holds for f + p for any p ∈ Rn. Thus we may assume that

cm[f ] = o,



6 MOHAMMAD GHOMI

the origin of Rn. Then we just need to verify that

(9) ave[f ] ∈ (1− λ) conv[f ].

for all f ∈ Imm1([0, 1],Rn) with cm[f ] = o and length[f ] = 1, and all 0 ≤ λ ≤
1/max[‖f ′‖]. To this end recall that ave[f ] = cm[f, ρ], where ρ := 1/‖f ′‖. Thus the
above relation may be rewritten as

cm[f, ρ] ∈ (1− λ) conv[f ].

If λ = 1, then ‖f ′‖ is constant, in which case cm[f, ρ] = cm[f ] = o. Thus we may
assume that λ < 1. Next note that∫ 1

0
f(t)λ‖f ′(t)‖dt = λ cm[f ] = o.

This yields that

cm[f, ρ]
(1− λ)

=
1

(1− λ)

∫ 1

0
f(t)(ρ(t)− λ)‖f ′(t)‖dt = cm[f, ρ− λ].

Since λ ≤ 1/max
[
‖f ′‖

]
= min[ρ], we have ρ− λ ≥ 0. So Lemma 2.3 yields that

cm[f, ρ− λ] ∈ conv[f ],

and completes the proof of (7). Next, to prove (8), note that if λ < min[ρ], then
ρ − λ > 0, in which case Lemma 2.3 again completes the proof. Finally, note that
supp

[
max

[
‖f ′‖

]
− ‖f ′‖

]
is the closure of the set of points where ρ 6= min[ρ]. Thus

if λ = min[ρ] and we set ρ̃ := ρ−λ, then supp
[
max

[
‖f ′‖

]
−‖f ′‖

]
= supp[ρ̃]. Then,

once again by Lemma 2.3, cm[f, ρ̃] ∈ relint conv[f ], which would complete the proof
of (7). �

3. Spherical Loops with Prescribed Average and Length

Here we show that for any point p ∈ Sn−1 we may construct a closed curve with
prescribed length L and average (1−δ)p provided that δ/L is sufficiently small. This
curve will begin and end at p and can be constructed to smoothly join any given
curve which passes through p. The proof of this result is divided into a sequence of
lemmas presented below. The main idea is to start with a curve of length L which
is symmetric with respect to p and shrink it continuously to p, while preserving its
symmetry and length, until its average reaches the desired value. To achieve this
we need to construct an appropriate family of contractions on the sphere which are
defined with the aid of the functions given by the following lemma:

Lemma 3.1. For every interval [0, b] ⊂ R and 0 < ε < b there exists a continuous
family of smooth functions ft : [0, b] → [0, b], t ∈ [0, 1), such that such that (i) f0(x) =
x for all x ∈ [0, b], (ii) ft(x) = x for all x ∈ [0, (1 − t)ε] (iii) ft is increasing (for
each fixed t), and (iv) for any x, y ∈ [0, b], |ft(x) − ft(y)| converges monotonically
to 0 as t approaches 1, and is strictly decreasing if x or y lie in [ε, b].
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Proof. We construct ft by integrating an appropriate function (which we designate
as f ′t). Set ft(0) := 0. Then in order for ft to satisfy the properties enumerated above
it is enough to have respectively (i) f ′0 ≡ 1 on [0, b], (ii) f ′t ≡ 1 on [0, (1 − t)ε], (iii)
f ′t > 0, and (iv) |

∫ x
y f

′
t(u)du| converges monotonically to 0 and is strictly decreasing

if x or y lie in [ε, b]; in particular, to satisfy (iv) it is enough to require that f ′t(x)
converge monotonically to 0 for each fixed x > 0 and be strictly decreasing when
x ∈ [ε, b].

0 x

f 't

1

b

t = 0

t = 0.2

t = 0.4

t = 0.6

t = 0.8

Figure 1

Figure 1 shows the graphs of some representatives from a family of functions
which satisfy all the properties required of f ′t. To construct this family explicitly we
may set

f ′t(x) := 1− tψt(x)
where ψt is a continuous family of smooth nondecreasing step functions such that
ψt ≡ 0 on [0, (1− t)ε], and ψt ≡ 1 on [(1− t)ε′, b] for some ε < ε′ < b. In particular
we may set

ψt(x) :=

∫ x
−∞ φt(u)du∫∞
−∞ φt(u)du

where φt is the family of bump functions given by

φt(x) :=

exp
(

−1(
x−(1−t)ε

)(
(1−t)ε′−x

))
, if (1− t)ε ≤ x ≤ (1− t)ε′;

0, otherwise.

�

For any pair of points x, p ∈ Sn−1, the reflection x′ of x with respect to p is
defined as follows: if x = ±p, then we set x′ := x; otherwise we let x′ be the point
other than x on the geodesic, or great circle, passing through x and p such that
distSn−1(x′, p) = distSn−1(p, x). The reflection X ′ of any set X ⊂ Sn−1 with respect
to p is defined by reflecting each of its points. If X = X ′ then we say that X is
symmetric with respect to p. A mapping f : A ⊂ Sn−1 → Sn−1 preserves symmetry
with respect to p provided that whenever X ⊂ A is symmetric with respect to p,
then f(X) is symmetric with respect to p as well.



8 MOHAMMAD GHOMI

Lemma 3.2. Let p ∈ Sn−1 and H be a hemisphere centered at p. There exists a
continuous family of smooth embeddings φt : H → Sn−1, t ∈ [0, 1), which preserve
symmetry with respect to p, and such that φ0 is the identity, each φt is the identity
on some open neighborhood of p, φt converges to p as t approaches 1, and for every
pair of points q, r ∈ H and t > s

(10) distSn−1

(
φt(q), φt(r)

)
≤ distSn−1

(
φs(q), φs(r)

)
.

Finally, for any given open neighborhood U of p, we may require that the above
inequality be strict whenever q or r lie outside of U .

Proof. Let ft : [0, π/2] → [0, π/2] be as in Lemma 3.1 where we choose ε so small
that a ball of radius ε centered at p is contained in U . Then we define φt(q) as the
point on the geodesic segment connecting q to p such that

(11) distSn−1

(
φt(q), p

)
= ft

(
distSn−1(q, p)

)
.

Since by Lemma 3.1 ft is increasing for each fixed t it follows that φt is an embedding.
Further, with the exception of inequality (10) which we will verify below, it is clear
that φt satisfies all the other desired properties as well. For instance, since each ft

is the identity function close to 0, it follows that each φt is the identity map close
to p; and since ft converges to 0 on (0, π/2] it follows that φt converges to p.

In order to prove (10) we first abbreviate our notation as follows: for any q ∈ Sn−1

let q := distSn−1(p, q) and qt := φt(q). Then by (11) we have

qt = ft(q).

Next, applying the spherical law of cosines to the geodesic triangle qtprt we record
that

cos
(
distSn−1(qt, rt)

)
= cos qt cos rt + sin qt sin rt cos θ,

where θ is the angle of the geodesic triangle qtprt at p. Similarly,

cos
(
distSn−1(qs, rs)

)
= cos qs cos rs + sin qs sin rs cos θ.

Since the distance between any pairs of points of H is at most π and cos is decreasing
on [0, π], it follows that (10) holds if only we have

cos
(
distSn−1(qt, rt)

)
≥ cos

(
distSn−1(qs, rs)

)
which is equivalent to

(12) cos qt cos rt − cos qs cos rs ≥ (sin qs sin rs − sin qt sin rt) cos θ.

Since by assumption t > s, it follows that qt ≤ qs, because qt = ft(q) − ft(0)
is a nonincreasing function of t by Lemma 3.1. Similarly rs ≥ rt. So, since sin is
increasing on [0, π/2], we have sin qs sin rs−sin qt sin rt ≥ 0. Consequently (12) holds
provided that

cos qt cos rt − cos qs cos rs ≥ sin qs sin rs − sin qt sin rt,

which may be rewritten as

cos(qt − rt) ≥ cos(qs − rs).
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We may assume that q ≥ r. Then qt ≥ rt, since by Lemma 3.1, ft is increasing
for each fixed t. Similarly qs ≥ rs. So, since cos is decreasing on [0, π/2], the last
displayed inequality holds provided that

qt − rt ≤ qs − rs.

This is indeed the case by part (iv) of Lemma 3.1. Thus proof of (10) is complete.
It remains to show that the inequality in (10) is strict whenever q or r do not lie
in U . Suppose, for instance, that q 6∈ U . Then q ∈ [ε, π/2]; therefore, by Lemma
3.1, the last inequality displayed above is strict. This forces the inequality in (10)
to be strict as well, as can be seen by going backwards through the chain of the
last five inequalities displayed above, and observing that whenever one is strict, the
subsequent one will also be strict. �

Lemma 3.3. Let f0 ∈ Immα([a, b],Sn−1), and f0(a) = p = f0(b). Suppose that
f0([a, b]) is contained in a hemisphere centered at p. Then there exists a continuous
family of immersed curves ft ∈ Immα([a, b],Sn−1), t ∈ [0, 1), such that length[ft] =
length[f0], and ft converges to p as t approaches 1. Further we may require that for
each t there be an open neighborhood of the end points of [a, b] where ft = f0, and
ft be symmetric with respect to p if f0 has this symmetry.

Proof. We may suppose, for convenience, that ‖f ′0‖ = 1. Then length[f0] = b − a.
Let αt := φt ◦ f0, where φt is as in Lemma 3.2, and U in Lemma 3.2 is chosen so
small that it does not contain the entire image of f0. Then αt ∈ Immα([a, b],Sn−1)
is a continuous family which satisfies all the properties which are ascribed to ft

above except that length[αt] is strictly decreasing. In particular, for every t ∈ [0, 1)
there exists a unique s(t) ∈ [0, 1) such that length[αs(t)] = (1− t)(b−a). Thus, after
a reindexing, we may suppose that length[αt] = (1 − t)(b − a). Further we may
reparameterize so that

αt : [a, b− t(b− a)] → Sn−1,

and αt has unit speed. Next we define a family of complimentary curves βt : [b −
t(b− a), b] → Sn−1, by setting

βt(s) := α1−t

(
s− (1− t)(b− a)

)
.

Now for t ∈ [0, 1/2] let ft : [a, b] → Sn−1 be the curve which is obtained by joining
αt and βt in the natural way, i.e., set

ft(s) :=

{
αt(s), if s ∈ [a, b− t(b− a)];
βt(s), if s ∈ (b− t(b− a), b].

Then ft is a continuous family of Cα-immersion. Further ft has constant speed 1,
so length[ft] = (b − a) = length[f0] as desired. Furthermore, note that f1/2 double
covers the trace of α1/2, since α1/2 and β1/2 have identical traces. So we have shown
that we may continuously deform f0, while maintaining its length, symmetry and
other required properties, until it double covers a curve of half the length of f0.
Similarly, we may iterate this procedure to define ft, for t ∈ [1/2, 3/4], by starting
with f1/2 and end with a double covering of a curve which has half the length of f1/2
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or a quarter of the length of f0. Thus we may define ft for all t ∈ [0, 1). This yields
the desired family because whenever t =

∑n
i=1 1/2i the trace of ft coincides with

that of a curve whose length, and therefore distance from p, becomes arbitrarily
small as n gets large. �

We are now ready to prove the main result of this section:

Proposition 3.4. Let p ∈ Sn−1, U ⊂ Sn−1 be an open neighborhood of p, and `,
c > 0. There exists δ > 0 such that for any 0 < δ ≤ δ and [a, b] ⊂ R with (b−a) ≥ `
one may find an immersed curve f : [a, b] → U of constant speed c such that

ave[f ] = (1− δ)p,

f(a) = p = f(b), and f ′(a) is parallel to f ′(b). Furthermore, if C ⊂ Sn−1 is the
image of any Cα≥1 embedded curve passing through p, then we may require that f
admit a Cα extension f̃ : [a− ε, b+ ε] → Sn−1, for some ε > 0, such that

f̃
(
[a− ε, a] ∪ [b, b+ ε]

)
⊂ C.

and f̃ ′(a) is parallel to the direction of C at p.

p

q
r

p
q

r

r'
q' p

q
r

r'
q'

Figure 2

Proof. First we describe how to obtain δ. Consider a small segment of C with end
points q and r which contains p in its interior and is contained in U , see Figure
2. We assume that q precedes p with respect to the direction of C. Let q′r′ be
the reflection of the segment qr with respect to p. Choosing q and r sufficiently
close to p, we can make sure that the segment q′r′ lies in U . Further note that q′

and r can be made arbitrarily close provided that the length of the segment qr is
sufficiently small. In particular, we may choose the length, say λ, of the segment
qr so small, that the distance between r and q′ is less than (`c − 2λ)/2 and the
(shortest) geodesic segment connecting r and q′ lies in U . Then, since by assumption
(b− a) ≥ `, r and q′ may be joined to each other by a smooth segment rq′ of length
((b−a)c−2λ)/2 in U which meets the segments qr and q′r′ smoothly. Reflecting qr′

with respect to p, we obtain a segment q′r which joins the other ends of the segments
qr and q′r′. Thus we obtain a smooth closed curve of length (b− a)c which we may
parametrize by f : [a, b] → Sn−1 of constant speed c so that f(a) = p = f(b) and
f passes through the points p, r, q′, p, r′, q, p in that order. By construction, f has
the desired extension f̃ . Further, by symmetry, ave[f ] = kp. For some 0 < k < 1.
We set δ := 1 − k. Then ‖ ave[f ] − p‖ = δ. Now recall that, by Lemma 3.3, we
may continuously shrink f towards p while preserving its symmetry and length.
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This makes ‖ ave[f ]−p‖ arbitrarily small in a continuous way. In particular we may
require that ‖ ave[f ]−p‖ = δ for any given 0 < δ ≤ δ which completes the proof. �

4. Constant Speed Approximations for Spherical Curves

We now use the main results of the previous sections to show that any spherical
curve f may be approximated by another spherical curve with the same average as
f and speed equal to any given constant not smaller than the maximum speed of f .
This is achieved by adding a number of small loops to the image of f . To find the
locations where these loops should to be added, and the required length for each
loop, we need to recall a pair of results from classical convexity theory.

Lemma 4.1 (Steinitz, [10]). Let X ⊂ Rn, and p ∈ int convX. Then there exist 2n
(or fewer) points xi ∈ X such that p ∈ int conv{x1, . . . , x2n}. �

Lemma 4.2 (Kalman, [7]). Let P ⊂ Rn be a convex polytope with vertices vi,
i = 1, . . . , k. Then there exists continuous functions φi : P → R such that φi ≥ 0,∑k

i=1 φi = 1, and, for every x ∈ P , x =
∑k

i=1 φi(x)vi. �

Note 4.3. For any given x ∈ intP , we may choose the functions φi in Lemma
4.2 so that φi(x) > 0. This is achieved by replacing φi with φi + θi where θi are
appropriately chosen functions with

∑k
i=1 θi = 0. More explicitly, note that for any

x ∈ P there exists j ∈ {1, . . . , k} such that φj(x) > 0, because
∑k

i=1 φi = 1. In
particular, there exists ε > 0 such that φj(x)− ε > 0. So we may set θj := −ε and,
for i 6= j, set θi := ε/(k − 1).

We say that a curve f ∈ Immα([a, b],Rn) is closed if f (i)(a) = f (i)(b), for 0 ≤ i ≤
α. Then we may write f ∈ Immα(Γ,Rn), where Γ = R/(b− a)Z. The main result
of this section is:

Theorem 4.4. Let f ∈ Immα([a, b],Sn−1), U ⊂ Sn−1 be an open neighborhood
of f([a, b]), and c ≥ max

[
‖f ′‖

]
. Suppose that int conv[f ] 6= ∅, and, furthermore,

either c > max
[
‖f ′‖

]
, or there exists no proper support hyperplane of f([a, b]) which

contains f
(
supp

[
max

[
‖f ′‖

]
−‖f ′‖

])
. Then there exists f̃ ∈ Immα([a, b],Sn−1) with

constant speed c such that f̃([a, b]) ⊂ U ,
∫ b
a f(x)dx =

∫ b
a f̃(x)dx, f̃(a) = f(a), f̃(b) =

f(b), and for every η > 0 there exists η̃ > 0 such that f̃([a, a + η̃]) ⊂ f([a, a + η])
and f̃([b− η̃, b]) ⊂ f([b− η, b]). In particular, if f is closed then so is f̃ .

Proof. We construct f̃ by adding loops to f at a number of points which are selected
as follows. First note that if ‖f ′‖ = c, then we may simply set f̃ := f and we will
be done. Otherwise λ := ave ‖f ′‖/c < 1, since by assumption c ≥ max[‖f ′‖]. Con-
sequently, since by assumption relint conv[f ] = int conv[f ], Proposition 2.4 yields
that

ave[f ]− λ cm[f ]
(1− λ)

∈ int conv[f ].
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Since int conv[f ] is a nonempty open set, we may choose δ so small that for every
0 ≤ δ ≤ δ,

q(δ) :=
ave[f ]− λ cm[f ]
(1− λ) (1− δ)

∈ int conv[f ].

Now by Steinitz theorem (Lemma 4.1) there are k ≤ 2n point ti ∈ [a, b] such that

q(δ) ∈ int conv
{
f(t1), . . . , f(tk)

}
.

Choosing k as small as possible, we may assume that each f(ti) is a vertex of the
polytope conv{f(t1), . . . , f(tk)}. These are the points to which we will add our
loops. Next we will describe how to determine the size of each loop. Note that

(13) q(δ) =
k∑

i=1

φi(δ)f(ti),

where φi(δ) := φi(q(δ)) are the coefficients given by Lemma 4.2. In particular
φi : [0, δ] → R are continuous. Further recall (see Note 4.3) that we may assume
that φi(0) > 0. Thus, choosing δ > 0 sufficiently small, we can make sure that
φi(δ) > 0 for all δ ∈ [0, δ]. In particular, letting φi be the minimum of φi on [0, δ],
we may record that

φi(δ) ≥ φi > 0.

These φi(δ), for a sufficiently small δ > 0, are used to determine the size of the loops
as we describe below.

In order to define f̃ we divide [a, b] into 2k + 1 subintervals. To this end first let
t0 := a, tk+1 := b, and, for i = 1, . . . , k + 1, let

Li :=
∫ ti

ti−1

‖f ′(t)‖ dt

be the distance between f(ti−1) and f(ti) along f . Next let L =
∑k+1

i=1 Li be the
total length of f and define xj , j = 0, . . . , 2k + 1, recursively as follows depending
on whether j = 0, j is odd (j = 2i − 1, i = 1, . . . , k + 1), or j is even (j = 2i,
i = 1, . . . , k) :

x0 := a, x2i−1 := x2i−2 +
Li

L
λ(b− a), x2i := x2i−1 + (1− λ)(b− a)φi(δ).

Note that
x2i − x2i−1 ≥ (1− λ)(b− a)φi > 0.

Let δi be the upperbounds obtained from Proposition 3.4 by setting p := f(ti),
U := U , c := c, and ` := (1 − λ)(b − a)φi. Now choose δ ∈ (0, δ) so small that
δ ≤ min δi. Then we may define f̃ : [a, b] → Sn−1 as the curve with constant speed

(14) ‖f̃ ′(t)‖ =
L

λ(b− a)
=

ave ‖f ′‖
λ

= c,

which maps the (odd) intervals [x2i−2, x2i−1], i = 1, . . . , k + 1, to f([ti−1, ti]), and
maps the (even) intervals [x2i−1, x2i], i = 1, . . . , k, to the loops given by Proposition
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3.4, with p := f(ti), U := U , c := c, [a, b] := [x2i−1, x2i] and C a segment of the
image of f near f(ti).

We claim that f̃ is the desired curve. To see this first note that Proposition 3.4
implies

1
b− a

∫ x2i

x2i−1

f̃(t) dt =
x2i − x2i−1

b− a
ave

[
f̃
∣∣
[x2i−1,x2i]

]
= (1− λ)φi(δ)(1− δ)f(ti),

for i = 1, . . . , k. So, by (13),

(15)
1

b− a

k∑
i=1

∫ x2i

x2i−1

f̃(t) dt = (1− λ)(1− δ)q(δ) = ave[f ]− λ cm[f ],

Secondly note that by (3)

ave
[
f̃
∣∣
[x2i−2,x2i−1]

]
= cm

[
f̃
∣∣
[x2i−2,x2i−1]

]
= cm

[
f
∣∣
[ti−1,ti]

]
.

So it follows that

(16)
1

b− a

k+1∑
i=1

∫ x2i−1

x2i−2

f̃(t) dt = λ
k+1∑
i=1

Li

L
cm

[
f
∣∣
[ti−1,ti]

]
= λ cm[f ],

because the center of mass of a curve is the weighted average of the centers of mass
of its subsegments. Now adding both sides of (15) and (16) yields that

ave[f̃ ] = ave[f ]

as desired. �

Note 4.5. In the statement of the previous proposition we may also require that
f̃ be C0-close to f . This follows immediately by applying the last result to small
subsegments of f .

5. Proof of Theorem 1.1

First we will record the following simple observation which will allow us to assume
that the initial curve f0 in Theorem 1.1 has unit speed.

Lemma 5.1. Let f ∈ C1([a, b],Rn), and φ : [a, b] → [a, b] be C1. Then

‖f ◦ φ‖1 ≤ ‖f‖1(1 + ‖φ‖1).

Proof. Definition of ‖ · ‖1, which is given in (1), immediately implies that

‖f ◦ φ‖1 ≤ max
{
‖f‖0, ‖f‖1‖φ‖1

}
≤ ‖f‖0 + ‖f‖1‖φ‖1,

which completes the proof since ‖f‖0 ≤ ‖f‖1. �

Next we prove a pair of lemmas which are applications of Thom’s transversality
theorem. These results allow us to assume that the curvature of the initial curve f0

in Theorem 1.1 behaves nicely enough so that its tantrix satisfies the hypothesis of
the main result of the previous section, Theorem 4.4. In particular, the first lemma
below allows us to assume that the set of points where the curvature of f0 is strictly
less than its maximum does not lie in a hyperplane.
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Lemma 5.2. Let f ∈ Immα≥2([a, b],Rn), κ be the curvature of f , and c ≥ max[κ].
Suppose κ 6≡ c. Then for every ε > 0 there exists f ∈ Immα([a, b],Rn) with curvature
κ such that max[κ] ≤ c, ‖f − f‖2 ≤ ε, f = f on an open neighborhood of the end
points of [a, b], and f(supp[max[κ]− κ]) does not lie in any hyperplane.

Proof. By Thom’s transversality theorem [1], the first n derivatives of a Cn-dense
set of mappings f̃ ∈ Cn([a, b],Rn) are linearly independent everywhere except at a
finite set of points. We will quickly verify this fact in the next paragraph. Then
it follows that for a dense set of curves f̃ ∈ Immn([a, b],Rn) there exists no open
set U ⊂ [a, b] such that f̃(U) lies in a hyperplane H, for then all the derivatives
of f̃ at points of U would also have to lie in the (n − 1)-dimensional subspace of
Rn parallel to H. Let f̃i be a sequence of these totally non-planar curves such that
‖f − f̃i‖2 → 0. We glue f̃i to f as follows. Let U ⊂ [a, b] be an open set with closure
U ⊂ (a, b) such that κ < c on U (this is possible since κ 6≡ c by assumption). Let
φ : [a, b] → R be a C∞ function such that suppφ ⊂ U , 0 ≤ φ ≤ 1, and φ ≡ 1 on an
open set V ⊂ U . Set fi := (1 − φ)f + φf̃i. Then, since φ is fixed, an elementary
computation quickly shows that ‖fi − f‖2 → 0. Thus ‖κi − κ‖ → 0, where κi and κ
are curvatures of fi and f respectively. Consequently, for i sufficiently large κi < c
on U . Since κi = κ on Γ − U , it then follows that max[κi] ≤ c, when i is large
enough. But fi = f̃i on V , thus fi(V ) does not lie in any hyperplane. So when i is
sufficiently large, f := fi is the desired curve, since V ⊂ supp[max[κi]− κi].

It remains only to verify the existence of the sequence f̃i, i.e., we need to show
that the set of mappings f̃i ∈ Cn([a, b],Rn) whose first n derivatives are linearly
independent everywhere except at a finite set of points are Cn-dense. To this end
let

Jn([a, b],Rn) = [a, b]×Rn(n+1)

be the space of the n-jets of mappings f : [a, b] → Rn. We recall that, for any
f ∈ Cn([a, b],Rn), the corresponding n-jet jnf : [a, b] → Jn([a, b],Rn) is given by

jnf(t) =
(
t, f(t), f ′(t), . . . , f (n)(t)

)
.

Let A ⊂ Jn([a, b],Rn) consist of those elements whose last n-coordinates are not
linearly independent. The set of last n elements of A may be identified with the
set of n× n matrices of rank less than n. These matrices form a stratified space of
dimension n2 − 1, e.g. see [1, p. 16]. So dim(A) = 1 + n + (n2 − 1) which yields
that codim(A) = 1. By Thom’s transversality theorem, for a Cn-dense set of maps
f̃ ∈ Cn([a, b],Rn), jnf̃ is transversal to A. Since dim([a, b]) = codim(A), it follows
that jnf̃ may intersect A only at a discrete set, which, since [a, b] is compact, must
be finite. So the last n derivatives of f̃ are linearly dependent only at a finite set of
points. �

The next lemma allows us to assume that the curvature of the initial curve f0 in
Theorem 1.1 does not vanish.
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Lemma 5.3. Let f ∈ Immα≥2([a, b],Rn), κ be the curvature of f , c ≥ max[κ], and
c > 0. Then for any ε > 0, there exists f̃ ∈ Immα([a, b],Rn) with curvature κ̃ > 0
such that |f − f̃ |α ≤ ε, max[κ̃] ≤ c, f̃ is tangent to f along any finite number of
prescribed points, and f̃ = f on any given open set U ⊂ [a, b] where κ > 0 on the
closure U .

Proof. By Thom’s transversality theorem, there exists a dense set of curves f̃i ∈
Cα([a, b],Rn) which have nonvanishing curvature. As in the proof of the previous
lemma, we demonstrate this fact in the end. First, we use the existence of f̃i to
show that we may assume that the curvature of f does not vanish at the set of the
prescribed points. To see this let p ∈ [a, b] be one of these points, and suppose that
κ(p) = 0. Then p 6∈ U . Further note that since ‖f − f̃i‖1 → 0, we may assume,
after composing f̃i with a sequence of rigid motions converging to the identity, that
f̃i(p) = f(p), and the tangent line of f̃i at p is parallel to the tangent line of f at
p. Let V ⊂ [a, b] be an open neighborhood of p such that V is disjoint from U ,
does not contain any other prescribed point, and κ < c on V . Let φ : [a, b] → R
be a C∞ function with support in V such that 0 ≤ φ ≤ 1 and φ = 1 on an open
neighborhood of p. Now set f i := φf̃i + (1−φ)f . Then f i differs from f only on V ,
and ‖f i − f‖α → 0. In particular, since ‖f i − f‖2 → 0, curvature κi of f i converges
to κ which is strictly less than max[κ] on V . So it follows that max[κi] ≤ max[κ].
Further, by construction, κi(p) = κ̃i(p) > 0, f i(p) = f̃i(p) = f(p), and since f i

coincides with f̃i over an open neighborhood of p, the tangent line of f i at p is
parallel to that of f . Thus After replacing f with f i, for i sufficiently large, we may
assume that κ(p) 6= 0.

After performing the above procedure for each of the prescribed points p 6∈ U , we
may assume that κ does not vanish at the prescribed points. In particular, there
exists an open neighborhood W ⊂ [a, b] disjoint from U and the set of prescribed
points, which contains all the points of [a, b] where κ vanishes. LetW1 be a connected
component of W . Then κ > 0 near the end points of W1. Let ψ : [a, b] → R be a C∞
function with support in W1 such that 0 ≤ ψ ≤ 1 and κ > 0 on the closure of the set
of points of W1 where ψ < 1, e.g., ψ = 1 everywhere except on a sufficiently small
neighborhood of the end points of W1. Then after replacing f with f̃iψ + (1− ψ)f ,
for i sufficiently large, we may assume that κ > 0 on W1. Repeating this procedure
for each component of W yields that we may assume κ > 0 everywhere.

Finally it remains to verify that there exists a dense set of curves f̃i ∈ Cα([a, b],Rn)
which have nonvanishing curvature. To this end note that the curvature of a curve
vanishes if and only if its first two derivatives are linearly dependent. The argument
will now be similar to that at the end of the proof of the previous lemma. Consider
the jet space J2([a, b],Rn) = [a, b]×R3n, and let A ⊂ J2([a, b],Rn) consist of those
elements whose last two components are not linearly independent. Then the set of
the last two elements of A may be identified with the set of n× 2 matrices of rank
less than 2, which has dimension n+ 1 [1, p. 16]. Thus dim(A) = 1 + n+ (n+ 1),
and so codim(A) = n − 1. By Thom’s transversality theorem, there exists a dense
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set of curves f̃i ∈ Cα([a, b],Rn) whose jet j2f̃i is transversal to A. Since n ≥ 3,
dim([a, b]) < codim(A). So it follows that j2f̃i is disjoint from A, and thus has
positive curvature. �

With the aid of the previous two approximation results, we may now prove a local
version of our main theorem:

Proposition 5.4. Let f ∈ Immα≥2([a, b],Rn) and κ be the curvature of f . For any
c ≥ max[κ] and ε > 0, there exists f̃ ∈ Immα([a, b],Rn) with constant curvature c
such that ‖f − f̃‖1 ≤ ε, and f̃ is tangent to f at a, b and any other finite number of
prescribed points. If f is closed then so is f̃ , and if κ = c on an open neighborhood
of the end points of [a, b], then we may require that f̃ = f in some open neighborhood
of a and b.

Proof. First we show that it is enough to consider the case where ‖f ′‖ = 1. To see
this note that, after a dilation of Rn, we may assume that length[f ] = b−a. Then it
is easy to construct a diffeomorphism θ : [a, b] → [a, b] such that the reparameterized
curve f ◦ θ has unit speed; specifically, we may set θ := s−1(t), where s(t) :=
a +

∫ t
a ‖f

′(u)‖ du. Next note that if the proposition holds for unit speed curves,
then we may apply it to f ◦ θ and obtain a curve f̃ ◦ θ, with the desired curvature
properties, such that ‖f ◦ θ − f̃ ◦ θ‖1 ≤ ε/(1 + ‖θ−1‖1) . Now set f̃ := f̃ ◦ θ ◦ θ−1.
Then by Lemma 5.1

‖f − f̃‖1 = ‖(f ◦ θ − f̃ ◦ θ) ◦ θ−1‖1 ≤ ‖f ◦ θ − f̃ ◦ θ‖1(1 + ‖θ−1‖1) ≤ ε.

So f̃ is the desired curve, since curvature is invariant under reparameterization, and,
furthermore, if f ◦ θ = f̃ ◦ θ on an open neighborhood of the end points of [a, b],
then we also have f = f̃ over some (smaller) open neighborhood of a and b as well.

If ‖f ′‖ = 1, which we may assume from now on, then the tantrix T = f ′ and
consequently κ = ‖T ′‖. Further note that if c = 0, then we may simply set f̃ := f
and we will be done. Otherwise we may assume, by Lemma 5.3, that κ > 0. Then
T ∈ Immα−1([a, b],Sn−1). Divide [a, b] into k subsegments [ai−1, ai] where a0 := a,
ak := b, and {a0, . . . , ak} includes all the prescribed points where we would like
to have f̃ tangent to f . Choosing k sufficiently large, we may assume that each
|ai−1 − ai| is small enough so that

length
[
T

∣∣
[ai−1,ai]

]
< ε

for all i. Then T ([ai−1, ai]) will be contained in an open ball Ui ⊂ Sn−1 of (spherical)
radius ε/2. Let f be the C1 perturbation of f obtained by applying Lemma 5.2 to f
restricted to each interval [ai−1, ai]. Since f can be made arbitrarily C1-close to f ,
we may assume, after a reparameterization, that it has unit speed, and its tantrix
satisfies

T ([ai−1, ai]) ⊂ Ui.

Let T i be the restriction of T to each interval [ai−1, ai] and note that, by construc-
tion, T i

(
supp

[
max

[
‖T ′i‖

]
− ‖T ′i‖

])
does not lie in any hyperplane, unless T i has
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constant speed c. Thus we may apply Theorem 4.4 to each T i to obtain for each
i a mapping T̃i ∈ Immα−1([ai−1, ai],Sn−1) with constant speed c. Define T̃ by set-
ting it equal to T̃i on each [ai−1, ai]. Then T̃ ∈ Immα−1([a, b],Sn−1), ‖T̃ ′‖ = c,
‖T − T̃‖0 ≤ ε, T̃ (ai) = T (ai), and

∫ ai

ai−1
T̃ (t)dt =

∫ ai

ai−1
T (t)dt. Now, for t ∈ [a, b], set

f̃(t) := f(a) +
∫ t

a
T̃ (u)du.

Then f̃ ∈ Immα([a, b],Rn), ‖f − f̃‖1 ≤ ε, and f̃ is tangent to f at ai.
Finally recall that, by Theorem 4.4, the trace of T coincides with that of T̃ near

the end points of [a, b]. Thus, if T has constant speed c near the end points of [a, b],
then T̃ = T near the endpoints of [a, b] which in turn implies that f̃ = f on that
region as well. �

Our main result now quickly follows from the previous proposition:

Proof of Theorem 1.1. Let X ⊂ Γ be the given compact set where κ0 = c on an open
neighborhood of X. If X = ∅, then Proposition 5.4 completes the proof. Otherwise
let U be an open neighborhood of X where κ0 = c. Choosing U sufficiently close to
X, we may assume that κ0 = c near the end points of each of the segments of Γ−U .
Let f1 := f0 on U, and set f1 := f̃ on Γ− U , where f̃ is obtained from Proposition
5.4 applied to each segment of Γ − U by setting f = f0. Then f1 ∈ Immα(Γ,Rn)
and, since immersions and embeddings are open in C1(Γ,Rn), ft := (1− t)f0 + tf1,
t ∈ [0, 1], yields the desired homotopy, provided that we choose the ε in Proposition
5.4 sufficiently small. Specifically, note that

‖ft − f0‖1 = t‖f1 − f0‖1 ≤ ‖f1 − f0‖1 ≤ ε.

So ε needs to be chosen so small that whenever ‖f0−g‖1 ≤ ε then g is an immersion,
and furthermore g is an embedding when f0 is an embedding. �

Appendix

Here we check that the lower bound for the constant c in Theorem 1.1 is optimal,
i.e., if f ∈ Imm2(Γ,Rn) is any immersed curve and f̃ ∈ Imm2(Γ,Rn) has constant
curvature c which is strictly less than the maximum curvature of f , then f̃ cannot be
arbitrarily C1-close to f . To this end we require the following basic lemma. Recall
that a partition P = {t0, . . . , tk} of an interval [a, b] ⊂ R, is a finite set of points
such that a = t0 < · · · < tk = b. The length of a curve f ∈ C0([a, b],Rn) with
respect to a partition P is defined as

length[f ;P ] :=
k∑

i=1

‖f(tj−1)− f(tj)‖,

and the length of f is given by

length[f ] := sup
P∈Partition[a,b]

length[f ;P ],
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where Partition[a, b] denotes the set of all partitions of [a, b]. As is well-known,
when f is C1 this definition for length coincides with the analytical one given by (2).
If length[f ] is finite, then we say that f is rectifiable.

Lemma 5.5. Let f ∈ C0([a, b],Rn) be a rectifiable curve and fi ∈ C0([a, b],Rn) be
any sequence of rectifiable curves which converges to f with respect to the C0-norm.
Then

lim inf length[fi] ≥ length[f ].

Proof. Let P = {t0, . . . , tk} be a partition of [a, b]. Note that fi|[tj−1,tj ] is a connected
curve whose end points lie within spheres of radii ‖fi − f‖0 centered at f(tj−1) and
f(tj). Thus

length
[
fi

∣∣
[tj−1,tj ]

]
≥ ‖f(tj−1)− f(tj)‖ − 2‖fi − f‖0.

Summing both sides of the above inequality over j, we obtain

length[fi] ≥ length[f ;P ]− 2n‖fi − f‖0.

Since by assumption, ‖fi − f‖0 → 0 as i→∞ we then conclude that

lim inf length[fi] ≥ length[f ;P ].

This completes the proof since the partition P was arbitrary. �

Now we are ready to prove the main result of this section:

Proposition 5.6. Let f ∈ Imm2(Γ,Rn) and f̃i ∈ Imm2(Γ,Rn) be a sequence such
that each f̃i has constant curvature c and f̃i converges to f with respect to the C1-
norm. Then c ≥ max[κ], where κ is the curvature of f .

Proof. After reparameterizing f and f̃i by arclength, and passing to a subsequence
of f̃i, we may assume that f̃i and f have unit speed. Then the tantrices T̃i = f̃ ′i have
constant speed c and converge to T = f ′ with respect to the C0-norm. By Lemma
5.5, for any fixed t0 ∈ Γ and ε > 0, we have

lim inf length
[
T̃i

∣∣
[t0−ε,t0+ε]

]
≥ length

[
T

∣∣
[t0−ε,t0+ε]

]
Thus, since T and T̃i are C1, we may write∫ t0+ε

t0−ε
‖T̃ ′j(t)‖ dt ≥

∫ t0+ε

t0−ε
‖T ′(t)‖ dt− δi

for all j ≥ N(i) > i, where δi → 0 as i→∞. This in turn may be rewritten as

c ≥ 1
2ε

∫ t0+ε

t0−ε
‖T ′(t)‖ dt− δi

2ε
,

since ‖T̃ ′i‖ = c by assumption. Taking the limit as i→∞ now yields that

c ≥ 1
2ε

∫ t0+ε

t0−ε
‖T ′(t)‖ dt,
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for any t0 ∈ Γ and ε > 0. Thus, taking the limit as ε→ 0, we have

c ≥ ‖T ′(t0)‖ = κ(t0)

for any t0 ∈ Γ. In other words c ≥ max[κ] as claimed.
�
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