
TOPOLOGY OF SURFACES WITH CONNECTED SHADES

MOHAMMAD GHOMI

Abstract. We prove that any closed orientable surface may be smoothly
embedded in Euclidean 3-space so that when it is illuminated by parallel
rays from any direction the shade cast on the surface is connected.

1. Introduction

Let M be an oriented surface smoothly immersed in Euclidean space R3,
and ν : M → S2 be the unit normal vectorfield, or the Gauss map of M . Then
for any unit vector u ∈ S2 (corresponding to the direction of light) the shade,
or shadow 1, cast on M is defined as

Su :=
{

p ∈ M |
〈
ν(p), u

〉
> 0

}
,

where 〈·, ·〉 is the standard innerproduct in R3. A basic question, first consid-
ered by H. Wente in 1978 [19], is: Does connectedness of each of the shades

Su of a closed orientable surface M imply that M is convex? In [5] the author
showed that the answer is yes provided that either M is topologically a sphere,
or each of its shades is simply connected. Otherwise, it was proved that the an-
swer is no by constructing smooth (C∞) embedded tori with connected shades.
In this paper we extend that construction to all orientable closed surfaces:

Theorem 1.1. Every orientable closed surface admits a smooth embedding in

R3 with connected shades in all directions.

Thus, surprisingly, topological complexity has in general no bearing on the
number of components of a shade of a surface. In particular, the above theorem
gives counterexamples of every genus to a conjecture of J. Choe [3, p. 210]
which states that any immersion of a surface of topological genus g in R3

should have at least one shade with g + 1 components.
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Note that M has connected shades if and only if for every great circle C ⊂
S2, ν−1(S2 − C) has exactly two components. That is, the Gauss map of M
satisfies a two-piece-property [2], or tightness, in the sense of Banchoff [1] or
Kuiper [14]. The number of components of ν−1(S2 − C) has been called the
vision number [3] with respect to a direction perpendicular to C, and is of
interest in variational problems in geometric analysis, particularly the study
of the stability of surfaces of constant mean curvature (soap films) [3, 4]. The
study of shades is also of substantial interest in computer vision [12, 13], where
“shape from shading” problems are studied extensively.

The proof of Theorem 1.1, which is presented in Section 4, follows from a
pair of preliminary results, Propositions 2.1 and 3.1, proved in the next two
sections. The first proposition is concerned with the existence of closed curves
without any pairs of parallel tangent lines, i.e., skew loops, and is an extension
of a construction first discovered by B. Segre [16], see [5, Note 6.6]. It was
shown in [5] that a tubular surface about a skew loop has connected shades.
Here we show that one may construct a skew loop so that the corresponding
tubular surface has any desired number of pairs of points which face away from
each other, as defined in Section 3. We will then prove our second proposition
which states that if a surface with connected shades has a pair of points p, q
which face away from each other, then one may add a ‘handle’ to that surface
and thus increase its topological genus while preserving the connectedness of
each of its shades; see Figure 1.

p

q

Figure 1

More precisely, we will delete small neighborhoods of p and q which are
homeomorphic to disks and glue in their place a topological annulus. To this
end we first deform neighborhoods of p and q until they coincide with pieces
of spheres of the same radius, and then cut small disks from these spherical
pieces. It will be shown that the resulting surface still has connected shades.
Next we join the two boundary components of this surface with a surface of
revolution which we call an hour glass. The hour glass has the crucial property
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that each component of each of its shades intersects its boundary. This implies
that our final surface will have connected shades.

2. Skew Loops with Prescribed Points, Tangents,

and Principal Normals

By a curve in this paper we mean a continuous mapping γ : R → R3. We
say γ is closed, or is a loop, if it is periodic, and write γ : R/` → R3, where `
denotes the period. Further, γ is simple if γ(t) 6= γ(s), whenever 0 < |t−s| < `.
A regular curve is a C1 mapping γ : R → R3 with nonvanishing speed, i.e.,
‖γ′‖ 6= 0. The tangential indicatrix or tantrix of a regular curve γ is given by
T := γ′/‖γ′‖. If T (t) 6= ±T (s), whenever t 6≡ s(mod`), we say that γ is skew.
When γ is C2 and regular, its curvature is defined as κ := ‖T ′‖/‖γ′‖, and, if κ
does not vanish, the principal normal of γ is given by N := T ′/κ. By smooth

in this paper we always mean C∞. The main aim of this section is to show:

Proposition 2.1. Let (pi, Ti, Ni) ∈ R3 × S2 × S2, i = 1, . . . , n. Suppose that

Ti 6= ±Tj whenever i 6= j, and 〈Ni, Ti〉 = 0. Then there exists a smooth skew

loop γ : R/n → R3 with nonvanishing curvature such that

γ(i) = pi, T (i) = Ti, and N(i) = Ni,

where T and N are the tantrix and the principal normal of γ respectively.

Furthermore, if pi 6= pj whenever i 6= j, then we may require that γ be simple.

As we mentioned earlier, the above proposition may be regarded as a gen-
eralization of an earlier work of B. Segre [16] who first proved the existence
of skew loops (without prescribing specific points or frames). See [11] for
some historical notes on skew loops, and see [5] for an explicit example. More
recent developments on the theory of skew submanifolds may be found in
[9, 8, 10, 18, 17]. To prove the above proposition we need the following lem-
mas:

Lemma 2.2. Let (Ti, Ni) ∈ S2 × S2, i = 1, . . . , n. Suppose that Ti 6= ±Tj

whenever i 6= j, and 〈Ni, Ti〉 = 0. Then there exists a smooth simple loop

T : R/n → S2 such that

T (i) = Ti, T ′(i) ‖ Ni, and T (R) ∩ −T (R) = ∅.

Proof. It suffices to show that there exists a simply connected open subset
U ⊂ S2 such that Ti ∈ U and U ∩−U = ∅; for one may then easily construct,
by induction, a simple closed regular curve T : R/n → U with T (i) = Ti and
T ′(i) ‖ Ni. Any such curve would automatically satisfy T (R) ∩ −T (R) = ∅,
and thus would be the desired object.

To construct U we first note that, when i 6= j, every pair of points Ti, Tj

determine a unique great circle Cij passing through them, since Ti 6= ±Tj

when i 6= j. Let C := {Cij} be the collection of all such circles, and pick a
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point o ∈ S2 − C. Then o 6= −Ti. So every Ti may be joined to o by a unique
distance minimizing geodesic segment Γi. Further, since o 6∈ C, no pairs of
geodesic segments Γi and Γj can be parts of the same great circle when i 6= j.
This implies that −Γi ∩ Γj = ∅ for all i 6= j. Further, since by assumption
Γi is distance minimizing, i.e., its length is less than half of a great circle;
we have Γi ∩ −Γi = ∅. So if Γ := ∪iΓi, then Γ ∩ −Γ = ∅. In particular
δ := distS2(Γ,−Γ) > 0. Now let 0 < ε < δ/2, and, for any p ∈ S2, let Uε(p)
denote the set of points in S2 whose (spherical) distance from p is less than ε.
Then U := ∪p∈ΓUε(p) has the required properties. �

For any X ⊂ R3, the cone of X is defined as

cone X := {λx | x ∈ X, and λ ≥ 0 },

and the convex hull of X is the intersection of all convex sets containing X.
By the convex cone of X we mean the convex hull of the cone of X.

Lemma 2.3. Let T : [a, b] → S2 be any continuous map. Then for any point

p in the interior of the convex cone of T ([a, b]), there exists a smooth positive

function ϕ : [a, b] → R such that
∫ b

a

ϕ(t)T (t) dt = p.

Further, there exists δ > 0 such that for any 0 < δ ≤ δ we may set ϕ equal to

δ on an open neighborhood of the end points of [a, b].

Proof. By a theorem of Steinitz [15, p. 15], any interior point of the convex
hull of X ⊂ R3 lies in the interior of the convex hull of 6 (or fewer) points
of X. So, since p ∈ int conv cone T ([a, b]) = int conv cone T ((a, b)), there exist
ti ∈ (a, b), and ci > 0, i = 1, . . . , k, where 4 ≤ k ≤ 6, such that

(2.1) p ∈ int conv
{
c1 T (t1), . . . , ck T (tk)

}
.

Let ϕε
i : [a, b] → R be a smooth nonnegative function with

∫ b

a
ϕε

i(t) dt = 1, and
support in an ε-neighborhood of ti. Note that since ti ∈ (a, b), we may assume
that

(2.2) 0 < ε < min
i

{
|ti − a|, |ti − b|

}
,

which implies that ϕε
i vanishes near a and b. Let

T ε
i :=

∫ b

a

(
ϕε

i(t) + ε
)
ci T (t) dt.

Then limε→0 T ε
i = ciT (ti). In particular, by (2.1), we may choose ε small

enough so that

(2.3) p ∈ int conv
{
T ε

1 , . . . , T
ε
k

}
.
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Then, by a standard result from classical convexity theory [15, Thm. 1.1.13],

there are constants λε
i > 0, with

∑k
i=1 λε

i = 1, such that

p =
n∑

i=1

λε
i T ε

i .

Now set

ϕε :=
k∑

i=1

λε
i(ϕ

ε
i + ε)ci.

Then ϕε > 0, because ci, λε
i, ε > 0. Further

(2.4)

∫ b

a

ϕε(t)T (t) dt = p.

Also note that, whenever (2.2) is satisfied, ϕε is equal to

δ(ε) := ε

k∑

i=1

λε
ici

near a and b, because ϕε
i vanishes near a and b.

Let ε be small enough so that (2.2) and (2.3) are satisfied, and set

T
ε

i :=

∫ b

a

ϕε
i(t)ci T (t) dt.

Then limε→0 T
ε

i = ciT (ti), and just as we had argued above, we may choose ε
small enough so that, in addition to (2.2) and (2.3), the following condition is
also satisfied:

(2.5) p ∈ int conv
{
T

ε

1, . . . , T
ε

k

}
.

Then, again by [15, Thm. 1.1.13], there are constants λ
ε

i > 0, with
∑k

i=1 λ
ε

i =
1, such that

p =

k∑

i=1

λ
ε

i T
ε

i .

Now if we set

ϕε :=
k∑

i=1

λ
ε

iϕ
ε
ici,

then,

(2.6)

∫ b

a

ϕε(t)T (t) dt = p.
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Finally, for fixed ε satisfying (2.2), (2.3), (2.5) and any 0 < δ ≤ δ(ε), set

ϕ :=
δ

δ(ε)
ϕε +

(
1 −

δ

δ(ε)

)
ϕε.

Then
∫ b

a
ϕ(t)T (t)dt = p by (2.4) and (2.6). Also recall that ϕε > 0; thus

ϕ > 0. Finally note that ϕ = δ near a and b, because in that region ϕε
i and

consequently ϕε vanish by (2.2) and ϕε = δ(ε). �

Finally we need to recall the following basic fact, which will be used to prove
the last assertion in the statement of Proposition 2.1.

Lemma 2.4 ([11]). C2 skew loops with nonvanishing curvature form an open

subset in the space of all C2 closed curves γ : R/` → R3, with respect to the C2

topology. �

Now we are ready to prove the main result of this section:

Proof of Proposition 2.1. Let vj ∈ S2, j = 1, . . . , 4, be four points which con-
tain the origin of R3 in the interior of their convex hull,

o ∈ int conv{ v1, v2, v3, v4 }.

In particular, vi 6= ±vj, whenever i 6= j. Further suppose that vj 6= ±Ti. Then
there exist open neighborhoods Uj of vj in S2 such that Ui∩±Uj = ∅ whenever
i 6= j, ±Ti 6∈ Uj for all i and j, and if yj ∈ Uj then the interior of the convex
hull of {y1, . . . , y4} contains the origin. Now let vij ∈ Uj, i = 1, . . . n, be a
sequence of distinct points, and T k ∈ S2, k = 1, . . . , 5n be the sequence whose
elements are

T1, v11, v12, v13, v14, T2, v21, v22, v23, v24, . . . , Tn, vn1, vn2, vn3, vn4.

Then T i 6= ±T j, whenever i 6= j. Let N k ∈ TT k
S2, k = 1, . . . , 5n, be any

sequence with N 5i−4 := Ni, i = 1, . . . , n. Applying Lemma 2.2 to T k and Nk,
we obtain, after a reparametrization, a smooth simple closed curve T : R/n →
S2 such that, for i = 1, . . . , n,

T (i) = Ti, T ′(i) ‖ Ni and {vi1, vi2, vi3, vi4} ⊂ T ([i, i + 1]).

The last condition implies that the origin lies in the interior of the convex hull
of T ([i, i + 1]). Thus conv cone T ([i, i + 1]) = R3, and, in particular,

(pi+1 − pi) ∈ int conv cone T
(
[i, i + 1]

)
.

So it follows from Lemma 2.3 that fo each i there exists a smooth positive
function ϕi : [i, i + 1] → R such that

∫ i+1

i

ϕi(t)T (t) dt = pi+1 − pi,
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where we set pn+1 := p1. Further, on an open neighborhood of the end points
of [i, i + 1] we may set ϕi equal to any positive constant smaller than or equal
to some positive constant δi. In particular we may assume that ϕi is equal to
δ := mini δi near i and i + 1. Then, ϕ : R/n → R defined by

ϕ
∣∣
[i,i+1]

:= ϕi

is a smooth function. Now define γ : R/n → R by

γ(t) := p1 +

∫ t

1

ϕ(s)T (s) ds.

Then γ(i) = pi, and γ′(i) ‖ Ti, i = 1, . . . , n. Further γ′/‖γ′‖ = T . So T is the
tantrix of γ. Thus, since by Lemma 2.2 T is regular, i.e., ‖T ′‖ 6= 0, it follows
that the curvature κ of γ does not vanish. Furthermore, by Lemma 2.2, T is
one-to-one on R/n and T (R) ∩ −T (R) = ∅. Thus T is skew. Finally recall
that N := T ′/‖T ′‖. So, since T ′(i) ‖ Ni, it follows that N(i) = Ni.

To prove the last assertion of the proposition, it only remains to note that,
using the Wierstrauss approximation theorem followed by gluings, we may
construct a smooth closed curve γ̃ : R/n → R3 which coincides with γ in a
neighborhood of each integer and is C2-close to γ. In particular, if pi 6= pj, for
all i 6= j, then we may assume that γ̃ is simple (since embedding are dense
in the space of immersions of an n-manifold into a 2n + 1-manifold). Further,
Lemma 2.4 ensures that γ̃ is skew. �

3. Adding Handles to Surfaces with Connected Shades

Let M ⊂ R3 be a C2 immersed surface and p, q ∈ M . We say that p and q
face away from each other provided that (i) the line segment pq is orthogonal
to M at p and q, (ii) the Gaussian curvature of M is positive at p and q, and
(iii) if H is the mean curvature vector of M , then H(p) ‖ p−q and H(q) ‖ q−p;
see Figure 2. The main result of this section is:

p

q

Figure 2
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Proposition 3.1. Let M ⊂ R3 be a smooth closed embedded surface with

connected shades. Suppose M has a pair of points p, q which face away from

each other. Then there exists a smooth closed embedded surface M̃ ⊂ R3 with

connected shades, and

g(M̃) = g(M) + 1.

Further, for any open neighborhood U of {p, q} in M and ε > 0, we may

require that M̃ ⊃ (M − U), and M̃ − M lie within an ε neighborhood of the

line segment pq.

The proof of the above result rests on the following lemmas, the first of
which is concerned with a simple topological fact:

Lemma 3.2. Let M be a closed surface which is obtained by gluing a pair of

surfaces M1 and M2 along their boundary. Suppose there exists an open set

U ⊂ M such that U∩M1 is connected and each component of U∩M2 intersects

∂M2. Then U is connected.

Proof. If U ∩M2 = ∅ we are done. Otherwise, let V be a nonempty component
of U ∩M2. Then, by assumption, V intersects ∂M2. Let W be the component
of U which contains V . Then W ∩ ∂M2 6= ∅. So, since W is open in M , it
must contain a point of M1. In particular, W intersects U ∩ M1. Therefore,
since U ∩ M1 is connected, W must contain U ∩ M1. Thus every component
of U ∩ M2 lies in the (unique) component of U which contains U ∩ M1. So U
is connected. �

The next four lemmas are concerned with local deformations of a surface
and their effects on the connectedness of shades of that surface. We say that a
C2 hypersurface Mn immersed in Rn+1 is strictly convex, if (i) M has positive
Gauss curvature, (ii) through every point p of M there passes a plane Π such
that Π ∩ M = {p}, and (iii) M lies on one side of Π. Note that, in our
terminology, a strictly convex surface may not be connected.

Lemma 3.3 ([7]). Every smooth compact strictly convex hypersurface M ⊂
Rn+1 may be extended to a smooth closed embedded hypersurface O of posi-

tive curvature. Further, we may require that O lie within an arbitrary small

distance of the convex hull of M . �

The above lemma yields:

Lemma 3.4. Let M ⊂ R3 be a smooth embedded surface, and p ∈ M be an

interior point with positive Gauss curvature. Then for any open neighborhood

U of p in M which has positive Gauss curvature there exists a smooth embedded

surface M ′ homeomorphic to M , and arbitrarily C1-close to M , such that M ′ ⊃
M − U , M ′ − (M − U) has positive Gauss curvature, p ∈ M ′, TpM

′ = TpM ,

and an open neighborhood of p in M ′ lies on a sphere of radius r, for any given

r > 0.
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Proof. First note that, without loss of generality, we may replace U by any
open neighborhood of p contained in U . In particular, we may assume that U is
homeomorphic to a disk, is strictly convex, and is a graph over TpM . Further,
for definiteness we may assume, after a rigid motion, that TpM coincides with

the xy plane and U lies above xy-plane.
Now let A ⊂ U be an open neighborhood of ∂U , such that p 6∈ A, and let

S be a sphere of radius of r which is tangent to M at p and lies above the
xy-plane; see Figure 3. Note that, since U is strictly convex, every tangent

V p

A

O1U

S

Figure 3

plane of A is disjoint from p. Further, TpS = TpU is disjoint from A. So, since
A is compact, it follows that there exists an open neighborhood V of p in S
such that V ∪ A is strictly convex. Consequently, by Lemma 3.3, there exists
a smooth closed surface of positive Gauss curvature O ⊃ A ∪ V . By Jordan’s
curve theorem, O − ∂U consists of precisely two components. Let O1 be the
component of O−∂U which contains p, and M ′ be the closed surface obtained
from gluing M − U to O1 along their common boundary.

Note that A − ∂U ⊂ O1. Thus M ′ is smooth. Further, by Schoenflies
theorem, O1 is homeomorphic to a disk. Thus, since U is also homeomorphic
to a disk, and M ′ − O1 = M − U , it follows that M ′ is homeomorphic to M .
Next note that, V ⊂ O1 ⊂ M ′. So TpM = TpM

′. Finally note that, since
TpM = TpM

′ and O1 is convex, we may choose U small enough so that M ′ is
as close to M as desired in the sense of C1-topology. Thus, since M is compact
and embedded, we can make sure that M ′ is embedded as well. �

The proof of the next lemma employs the following simple but useful ob-
servation, which will be invoked a number of times in the remainder of this
paper. For every u ∈ S2 let

Hu := { p ∈ S2 | 〈p, u〉 > 0 }

be the (open) hemisphere of S2 centered at u. Then if M is any oriented
surface immersed in R3 and ν : M → S2 is its Gauss map, we have

(3.1) Su = ν−1(Hu)
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for all u ∈ S2. We say that a set X ⊂ S2 is geodesically convex if it lies in an
open hemisphere and every pairs of points of X may be joined by a geodesic
segment which lies in X.

Lemma 3.5. Let M ⊂ R3 be a smooth oriented closed surface with connected

shades, and U ⊂ M be an open set such that ν|U is a diffeomorphism into a

geodesically convex set. Then M − U has connected shades.

Proof. Let S̃u be a shade of M̃ := M−U . Then S̃u := Su−U . In particular, S̃u

is connected if U∩Su = ∅. So we may assume that U∩Su 6= ∅; further, we may
assume Su 6⊂ U , for otherwise S̃u would be empty. These two assumptions yield
that Su ∩ ∂U 6= ∅. Since Su is connected, this implies that every component
of S̃u must intersect ∂U . So, to show that S̃u is connected, it suffices to

check that S̃u ∩ ∂U is connected. But S̃u ∩ ∂U = Su ∩ ∂U , and Su ∩ ∂U =
ν−1(Hu ∩ ν(∂U)). Thus, since by assumption ν−1 : ν(U ) → U is continuous,
we just need to check that Hu ∩ ν(∂U) is connected. This follows from the
assumption that ν(U) is geodesically convex. To see this assume that ν(U)
lies in H(0,0,1), and take a stereographic projection from the center of S2 to

obtain a homeomorphism π : H(0,0,1) → T(0,0,1)S
2 ' R2. Then π(ν(U)) is a

convex planar set, and π(H(0,0,1) ∩ Hu) is an open half-space. Thus, by basic
convexity theory, π(ν(∂U) ∩ Hu) = π(ν(∂U)) ∩ π(H(0,0,1) ∩ Hu) is connected,
which yields that ν(∂U) ∩ Hu is connected. �

Lemma 3.6. Let M ⊂ R3 be a smooth oriented closed surface with connected

shades, and U ⊂ M be an open set such that U has positive Gauss curvature

and ν|U is a diffeomorphism into a geodesically convex set. If M ′ is any closed

smooth surface such that M ′ ⊃ M − U and M ′ − (M − U) has positive Gauss

curvature, then M ′ has connected shades.

Proof. Let ν ′ : M ′ → S2 be the Gauss map of M ′, and U ′ := M ′ − (M − U).
Note that ∂U ′ = ∂U , which is homeomorphic to a circle, since ν|U is a dif-

feomorphism into a geodesically convex set. So U
′

is a topological manifold
with boundary. Next note that, since U ′ has positive Gauss curvature by as-
sumption, and ∂U ′ = ∂U ⊂ U , it follows that U ′ has positive Gauss curvature.

So, by the inverse function theorem, ν ′ is locally one-to-one on U
′

. Further
ν ′ is one-to-one on ∂U ′, since ν ′|∂U ′ = ν|∂U . So it follows that ν ′ in one-to-

one on U
′

; see [6] where it is proved that any locally one-to-one map from a
compact n-manifold, n ≥ 2, into a sphere of the same dimension is one-to-one
everywhere, if it is one-to-one on the boundary of the manifold. Consequently,

since U
′

is compact and has nonvanishing Gauss curvature, ν ′ : U
′

→ ν ′(U
′

) is
a diffeomorphism. Now, since ν ′|∂U ′ = ν|∂U , it follows that ν ′(U ′) = ν(U). In
particular, ν ′(U ′) is geodesically convex.
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Let S ′

u := (ν ′)−1(Hu) be a shade of M ′. Note that if S ′

u ⊂ U ′, then Hu ⊂
ν(U ′), which yields that ν(U ′) = Hu; because, by definition, a geodesically
convex set lies in an open hemisphere. But if ν(U ′) = Hu, then S ′

u = U ′

which is connected, since U ′ is diffeomorphic to a geodesically convex set.
Now suppose that S ′

u 6⊂ U ′. Since ν ′(U ′) and Hu are geodesically convex,
Hu ∩ ν ′(U ′) is geodesically convex. In particular Hu ∩ ν ′(U ′) is connected,
which yields that S ′

u ∩ U ′ is connected. Further, if S ′

u ∩ U ′ 6= ∅, then S ′

u

intersects ∂U ′, because S ′

u 6⊂ U ′. So to prove that S ′

u is connected, it is now
enough to show that S ′

u ∩ (M − U ′) is connected. To see this note that, since
M−U ′ = M−U , we have S ′

u∩(M−U ′) = Su∩(M−U), where Su = ν−1(Hu).
So it remains to check that Su ∩ (M − U) is connected, which is indeed the
case, since, by Lemma 3.5, M − U has connected shades. �

By an hour glass H ⊂ R3 we mean a smooth embedded surface of revolution,
homeomorphic to an annulus, whose profile curve, when viewed as the graph
of a positive function f : [a, b] → R, satisfies the following properties:

(1) f ′(a) < 0 and f ′(b) > 0,
(2) f ′′ < 0 on [a, x1)∪(x2, b] and f ′′ > 0 on (x1, x2), for some x1, x2 ∈ (a, b);

see Figure 4.

Figure 4

In other words, H ⊂ R3 is an hour glass if after a rigid motion it may be
parametrized by

[a, b] × R 3 (z, θ) 7−→
(
f(z) sin(θ), f(z) cos(θ), z

)
∈ R3,

where f : [a, b] → R is a smooth positive function which satisfies the prop-
erties enumerated above. The main property of an hour glass, as far as the
illuminations are concerned, is stated in the next result:

Lemma 3.7. If H ⊂ R3 is an hour glass, then every component of each shade

of H intersects ∂H.

Proof. By definition there are precisely two inflection points in the profile
curve of H. These points generate a pair of meridians which divide H into
three regions. Supposing, after a rigid motion, that H is positioned vertically,
i.e., its axis of rotation is parallel to the z-axis, we let R1, R2 and R3 be the
top, middle, and bottom regions respectively; see Figure 5
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Figure 5

Let ν : H → S2 be the outward unit normal of H, and note that ν embeds
each Ri into an annular region of S2 bounded by a pair of horizontal circles or
meridians. In particular, the intersection of ν(Ri) with any hemisphere Hu of
S2 is connected. So, by (3.1), the intersection of any shade Su of H with Ri

must be connected.
Now note that ν(R2) contains the equator of S2 in its interior. Thus every

great circle of S2 must intersect the interior of ν(R2) (because no two great
circles of S2 are disjoint). Since ∂Hu is a great circle, it follows that Hu

intersects ν(R2). But ν(R2) 6⊂ Hu, because ν(R2) contains a great circle and
Hu is an open hemisphere. So Hu must intersect ∂ν(R2) = ν(∂R2). This
yields that Su intersects ∂R2. But, as we argued above, Su ∩ R2 is connected.
Thus no component S1

u of Su may be trapped in the interior of ∂R2. Since
∂R2 ⊂ (∂R1 ∪ ∂R3), it follows that S1

u must intersect R1 or R3.
Suppose that S1

u intersects R1. Then Hu intersects ν(R1). If ν(R1) ⊂ Hu,
then it follows that S1

u intersects ∂H, because a boundary component of ν(R1)
is the image of a boundary component of ∂H under ν. So if ν(R1) ⊂ Hu we
are done. If ν(R1) 6⊂ Hu, then, since Hu intersects ν(R1), it follows that ∂Hu

must intersect ν(R1). But ν(R1) is contained in the bottom hemisphere of
S2, and ∂Hu is a great circle. Thus ∂Hu must intersect the upper boundary
of ν(R1) (otherwise, by the Jordan curve theorem, ∂Hu would have to be
contained entirely in the interior of the bottom hemisphere of S2, which would
be a contradiction). But the upper boundary of ν(R1) is the image of the
top boundary component of H under ν. So, since Su ∩ R1 is connected, we
conclude that S1

u must intersect ∂H.
Similarly, one can show that if S1

u intersects R3, then S1
u must intersect ∂H,

which will complete the proof. �

Lemma 3.8. Let S1, S2 ⊂ R3 be a pair of spheres of radius r, and p1 ∈ S1,

p2 ∈ S2 be a pair of points which face away from each other. Then, for every

ε > 0, there exists an hour glass H such that an open neighborhood of ∂H lies

on S1 ∪ S2 and H lies within an ε neighborhood of the line segment pq.
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Proof. After a rigid motion we may assume that p1 = (−a, 0, 0) and p2 =
(a, 0, 0). Since, by assumption, p1p2 is orthogonal to S1 and S2, it follows then
that S1 and S2 are centered at (−a−r, 0, 0) and (a+r, 0, 0) respectively. Thus
the intersection of S1 and S2 with the xy-plane consists of a pair of circles
of radius of r centered at (−a − r, 0) and (a + r, 0) respectively. It suffices
to show that, for every 0 < δ < r, there exists a smooth positive function
f : [−a− δ, a+ δ] → R with precisely two inflection points such that the graph
of f coincides with the given circles near the end points of [−a − δ, a + δ].
Revolving the graph of f around the x-axis then yields an hour glass H such
that an open neighborhood of ∂H lies on S1∪S2, as desired. Further, choosing
δ sufficiently small, we can make sure that the graph of f is within a distance
ε of [−a, a] which in turn yields that H is within an ε neighborhood of pq.

We will construct f by producing its graph. To this end, let C1 be the
intersections of S1 with the xy-plane, and γ(t), 0 ≤ t ≤ `, be a unit speed
parametrization for the portion of C1 which lies above the x-axis and between
the lines x = −a − δ and x = −a − δ/2. We assume that γ(0) lies on the line
x = −a − δ. Let κ : [0, `] → R be the signed curvature function of γ. Then
κ(p) = −1/r (in our convention, the signed curvature is negative if the unit
tangent vector to the curve is moving clockwise and is positive if it is moving
counterclockwise). Let κ : [0, `+ η] → R be a nondecreasing smooth extension
of κ such that κ is zero only at one point and κ(` + η) = 1 (one may easily
construct κ using a step function). By the fundamental theorem of planar
curves, κ determines a planar smooth curve γ with unit speed and curvature
κ such that γ = γ on [0, `]. By construction γ has precisely one inflection
point and total length ` + η. The latter implies that, choosing η sufficiently
small, we can make sure that the image of γ lies in the second quadrant of the
xy-plane. Further note that the amount by which the unit tangent vector to γ

rotates depends on the integral of κ, and
∫ `+η

`
κ(t) dt can be made as small as

desired, by choosing η sufficiently small. So the tangent lines of γ on [`, ` + η]
can be made as close to the tangent line of γ at t = ` as desired.

Figure 6

Now let γ1 := γ, and γ2 be the reflection of γ across the y-axis; see Figure 6.
Then, by the last sentence in the above paragraph, if η is small, we can make
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sure that γ2[`, `+η] lies above all the tangent lines of γ1[`, `+η] and vice versa.
In particular, if we choose η′ < η sufficiently close to η so that κ is positive on
[`+η′, `+η], then it follows that that Γ := γ1([`+η′, `+η])∪γ2([`+η′, `+η])
is strictly convex. So, by Lemma 3.3, there exists a smooth simple closed
curve O of positive curvature such that Γ ⊂ O. Further, since Γ lies above the
x-axis, we may assume, by (the second sentence of) Lemma 3.3, that O lies
above the x axis as well. Let O1 be the bottom component of O − Γ. Then
γ1([0, ` + η]) ∪ O1 ∪ γ2([0, ` + η]) is the graph of the desired function f . �

Now we are ready to prove the main result of this section:

Proof of Proposition 3.1. Since M has positive Gauss curvature at p, q it fol-
lows that, given any open neighborhood U of {p, q} in M , we may let Vp,
Vq ⊂ U be open neighborhoods of p and q respectively such that Vp ∩ Vq = ∅,
V p and V q are strictly convex, and ν|V p

, ν|V q
are diffeomorphisms into geodesi-

cally convex subsets of S2, where ν is the Gauss map of M . By Lemma 3.4, we
may deform M inside Vp and Vq, without changing the sign of curvature there
or perturbing the tangent planes at p, q, so as to obtain a smooth embedded
surface M ′, homeomorphic to M, which is spherical in neighborhoods of p, q,
and contains M − U . Since (i) M ′ meets the end points of the segment pq
transversally, (ii) M ′ can be made arbitrarily close to M , and by assumption
(iii) M does not intersect the interior of the segment pq, it follows that we
can make sure M ′ does not intersect the interior of pq. Thus p, q face away
from each other as points of M . Finally note that, by Lemma 3.6, M ′ has
connected shades.

Now let Wp, Wq be small open neighborhoods of p, q in M ′ which are
convex caps cut off from M by planes parallel to TpM

′ and TqM
′ respectively.

We may assume that Wp and Wq are so small that their closures lie inside
the spherical open neighborhoods of M ′ at p and q. Then, by Lemma 3.5,
M ′′ := M ′−(Wp∪Wq) has connected shades. By Lemma 3.8 we may construct
an hour glass H, bounded by ∂M ′′ = ∂Wp ∪ ∂Wq, such that a neighborhood
of ∂H coincides with a pair of collars of W p and W q. Then, gluing M ′′ to H

along their common boundary yields a smooth closed surface M̃ , which, by
Lemma 3.2, has connected shades.

Next note that H lies within the convex hull of Wp ∪ Wq. Thus, choosing
Wp, Wq sufficiently small, we can make sure that H is arbitrarily close to pq ,

which is disjoint from M ′′. So we can make sure that M̃ is embedded. Finally,

since M̃ − M ⊂ (Vp ∪ Vq ∪ H), choosing Vp and Vq sufficiently small, ensures

that M̃ − M is as close to pq as desired. �
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4. Proof of Theorem 1.1

We need only one more lemma. Let γ : R/` → R3 be a smooth simple loop,
and distγ : R3 → R, given by

distγ(p) := inf
{
‖p − γ(t)‖ | t ∈ R/`

}
,

be the distance function of γ. Then it follows from the tubular neighborhood
theorem that for sufficiently small r

Tuber(γ) := dist−1
γ (r),

is a smooth embedded surface.

Lemma 4.1. Let γ : R/` → R3 be a smooth simple loop with nonvanishing

curvature, r be sufficiently small so that M := Tuber(γ) is a smooth embedded

surface, and K be the Gauss curvature of M . Then for every t ∈ R/`,

K
(
γ(t) − rN(t)

)
> 0

where N is the principal normal of γ.

Proof. Let B := T×N denote the binormal of γ. Then M may be parametrized
by X : R/` × R/2π → R3 given by

(4.1) X(t, θ) := γ(t) + r cos(θ)N(t) + r sin(θ)B(t).

A standard computation, with the aid of Frenet-Serret formulas, then shows
that

K
(
X(t, θ)

)
=

−κ(t) cos(θ) + r
(
cos2(θ)κ2(t) − sin2(θ)τ 2(t)

)

r
(
1 − r cos(θ)κ(t)

)2 ,

where κ and τ are the curvature and torsion of γ respectively. In particular,
note that K

(
γ(t) − rN(t)

)
= K(X(t,−π)) > 0. �

Now we are ready to prove Theorem 1.1. First recall that the case of g(M) =
0 is trivial, since the standard sphere S2 has connected shades, and the case of
g(M) = 1 was proved in [5], by showing that a tube around a skew loop has
connected shades. For the case of g(M) = n ≥ 2, let

pi := (0, 0, i), and Ni :=
(
0, 0, (−1)i

)
,

for i = 1, . . . , 2n − 2. Then, by Proposition 2.1, there exists a smooth simple
skew loop γ : R/(2n − 2) → R3 such that γ(i) = pi and N(i) = Ni (to
apply Proposition 2.1, we only need to note that one may easily find Ti ∈ S2

such that 〈Ti, Ni〉 = 0, and Ti 6= ±Tj, whenever i 6= j; for instance, let
Ti := (cos(πi/4n), sin(πi/4n), 0)). By Lemma 2.4, after a perturbation of γ,
which keeps γ fixed on an open neighborhood of each integer, we may assume
that the z-axis does not intersect the image of γ at any points other than pi.
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Since γ is a smooth simple skew loop, M := Tuber(γ) is a smoothly em-
bedded surface with connected shades, for r sufficiently small [5, Prop. 6.3].
Now, for i = 1, . . . , n − 1, set

xi := p2i − rN2i, yi := p2i−1 − rN2i−1;

see Figure 7. Then xi, yi ∈ M . We claim that xi, yi ‘face away’ from each other,

p
2i

p
2i-1

N2i

N2i-1

xi

yi

z

Figure 7

as defined in the beginning of Section 3. To see this first note that if K denotes
the Gauss curvature of M , then K(xi), K(yi) > 0 by Lemma 4.1. Further,
the segments xiyi are pairwise disjoint from each other, and their interiors are
disjoint from M , if we assume that r is sufficiently small. Furthermore, if ν is
the inward unit normal of M , then ν(xi) = N2i and ν(yi) = N2i−1 (for, as a
computation shows, if X(t, θ) is the parametrization of M given by (4.1), then
ν(X(t, θ)) = − cos(θ)N(t) − sin(θ)B(t)). So the segment xiyi is orthogonal to
M at its end points. Finally note that, since by definition N2i is parallel to
the positive direction of the z-axis, p2i is a local minimum for the height of
γ (with respect to he xy-plane). This yields that xi is a local minimum for
the height of M . Thus if H is the mean curvature vector of M , then H(xi)
points up, i.e., H(xi) ‖ xi−yi. Similarly, since N2i−1 is parallel to the negative
direction of the z-axis, it follows that H(yi) ‖ yi − xi. Thus we conclude that
M has n − 1 pairs of points {xi, yi} which face away from each other.

Let Ui be an open neighborhood of {xi, yi} in M chosen sufficiently small
so that Ui ∩ Uj = ∅, when i 6= j, and let ε > 0 be smaller than the smallest
distance between the segments xiyi. By Proposition 3.1 there exists a smooth
embedded surface M1 with connected shades, and g(M1) = g(M) + 1 = 2,
such that M − U1 ⊂ M1 and M1 − M lies within a distance ε of x1y1. In
particular, M1 has n − 2 pairs of points {xi, yi}, i = 2, . . . , n − 1, which face
away from each other, and M1 is disjoint from the interiors of xiyi. So we may
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apply Proposition 3.1 again. Repeating this procedure, we eventually obtain
a smooth embedded surface Mn−1 with connected shades and g(Mn−1) = n.
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