MATH 2401 - Harrell

Visualization in 3D

What about this class?

Just to see what happens,

 let's glue together two ideas.

Vectors \& Functions

Vectors \& Derivatives

But first - Vector Boot Camp!

Two ways to analyze vectors

1. Use components
2. Use length and direction

Positive correlation

Negative correlation

$$
\begin{aligned}
& \vec{V}=(4,-3,8) \\
& \vec{W}=(4,-6,6) \\
& \alpha 1+\beta w=\overrightarrow{0} \\
& \vec{X} \perp \vec{V} \text { a lso } \vec{W}
\end{aligned}
$$

The dot (or scalar) product

Correlation and the dot product

$+v \cdot w>0$. . . . Positive correlation
$+v \cdot w<0$. . . . Negative correlation
$+v \cdot w=0 . .$. Orthogonal
= perpendicular
= uncorrelated

The cross (or vector) product

+2 vectors in, vector out
$+\mathbf{v} \times \mathbf{w}=|\mathbf{v}||\mathbf{w}| \sin (\alpha) \mathbf{z}$, where \mathbf{z} is a unit vector perpendicular to both v and \mathbf{w}, according to the right-hand rule.
$+|\mathbf{V} \times \mathbf{w}|=$ area of parallelogram formed from v and w.
$+\mathbf{V} \times \mathbf{W}=\left(v_{2} w_{3}-v_{3} w_{2}\right) \mathbf{i}+\left(v_{3} w_{1}-v_{1} w_{3}\right) \mathbf{j}+\left(v_{1} w_{2}-v_{2} w_{1}\right) \mathbf{k}$

Some tricky stuff

Cross products. $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$. (In fact) What's right is right and what's left is left. Same for calculus.

One of the great tricks of

 vector calculus:$+1 \mathrm{If}^{\text {y }}$ yon canll rewrite a vectanr mproblem in some way ans an scalanr problolem, it lbecomes "Kinderajarten math."

Vectors and Functions

Curve. At a certain time (scalar), just where are you (vector)?

$$
t \rightarrow \mathbf{x}(t)
$$

Scalar field. At a certain place (vector), just how hot are you (scalar)?

$$
\mathbf{x} \rightarrow T(\mathbf{x})
$$

Vector field. At a certain place (vector), what are the wind speed and direction (vector)?

$$
\mathbf{x} \rightarrow \mathbf{v}(\mathbf{x})
$$

Curve. At a certain time (scalar), just where are you (vector)?

$$
t \rightarrow \mathbf{x}(t)
$$

Scalar field. At a certain place (vector), just how hot are you (scalar)?

$$
\mathbf{x} \rightarrow T(\mathbf{x})
$$

Vector field. At a certain place (vector), what are the wind speed and direction (vector)?

$$
\mathbf{x} \rightarrow \mathbf{v}(\mathbf{x})
$$

Why on earth would you differentiate a

+ dot product
+ cross product ?

Examples

+ How fast is the angle between two vectors changing?

$$
\cos \theta(\mathrm{t})=\mathrm{v}(\mathrm{t}) \cdot \mathrm{w}(\mathrm{t})
$$

(You'll need product and chain rule.)

+ How fast is the angular momentum changing? $L=r \times p$.

Why on earth would you integrate a vector function?

Examples

+ Given velocity $\mathbf{v}(\mathrm{t})$ find position $\mathbf{x}(\mathrm{t})$. + Power $=\mathrm{F} \bullet \mathrm{v}$ Work is the integral of this. If, say, \mathbf{v} is fixed, you can integrate \mathbf{F} and then dot it with \mathbf{v}.

The good news:

+ The rules of vector calculus look just like the rules of scalar calculus

The good news:

+ The rules of vector calculus look just like the rules of scalar calculus
+ Integrals and derivs of $\alpha f(t), f(t)+g(t)$, etc.

The good news:

+ The rules of vector calculus look just like the rules of scalar calculus
+ Integrals and derivs of $\alpha f(t), f(t)+g(t)$, etc.
+Also - because of this - you can always calculate component by component.

Some nice curves

+2 D spiral:

$$
(x(t), y(t))=(t \cos (t), t \sin (t))
$$

+ Lissajoux figure:

$$
(x(t), y(t))=(\cos (2 t), \sin (3 t))
$$

+3 D helix:

$$
(x(t), y(t), z(t))=(4 \cos (t), 4 \sin (t), t)
$$

