MATH 2401 - Harrell

Making the grad

Lecture 10

Current reading and homework assignments

- Due Thursday, 25 September:

REMINDER - THERE WILL BE A TEST ON THIS DATE
Reading:

- The test will cover SHE, Sections 14.5, 15.1-15.6, 16.1-16.4.
- Review the lecture of 17 September
- Review the lecture of 22 September
- Review the lecture of 24 September
- Optional, but helpful, see Chapter 8 of Cain and Herod's on-line vector-calculus text

Practice Problems : Note: Homework will not be collected on Thursday. These exercises are to help you practice for the test. Even better, do ALL the exercises in Chapter 15 and Sections 16.1-16.4.

- SHE, Chapter 15.6, \#4-18,23,24,27,30
- SHE, Chapter 16.1, \#12-21,33-37.
- SHE, Chapter 16.2, \#1-4,9-11,15,18-20,23-25,32,37
- SHE, Chapter 16.3, \#1-3,7-13,25,27,29-33
- SHE, Chapter 16.4, \#3,5,7,11,15,21,24,31,34,35
- Do the Chapter 15 Review exercises, especially 7-13, 17-19,33-38,44

Current contests

Note about contest entries. These must be entirely your own work and not, for example, copied from the Web, even in modified form (which would be an honor code violation.

Unless otherwise specified, entries should be submitted to the professor, either in hard copy or A

Oh, and "Happy fall!"

(as of 11:44 this morning)

$$
\vec{r}(t) \cong 150 \times 10^{6} \cos \left(\frac{2 \pi}{365.25}(t-2)\right)+149 \times 10^{6} \sin \left(\frac{2 \pi}{365.25}(t-2)\right)
$$

Time t measund in dayp from oh on 1 gannay, 2008 Eark axis vecta: $\hat{u}=.3899 \hat{\imath}-.0835 \hat{\jmath}+.9171 \hat{k}$

Perihelia from http://aa.usno.navy.mil/data/docs/EarthSeasons.php . Times in U.T.

Differentiation as a three -dimensional concept

+ We say f is differentiable iff
$f(x+h)-f(x)=y \cdot h+o(h)$,
$+y$ is called the gradient of f at x, and denoted $\nabla f(x)$.
+ The gradient $\nabla \mathrm{f}(\mathbf{x})$ of a scalar function is a vector-valued function of a vector variable!

Strategies for working with the gradient

\pm Reduce a problem to 1-D

+ Keep the problem 3-D, let 1-D calculus be your guide.

The gradient in thermodynamics

+ Suppose the temperature in a solid is T(x,y,z). Newton's law of cooling says that the heat energy flows in the direction _- $\nabla \mathrm{T}_{-}$, and that the rate is proportional to \qquad .
+ "Heat flux" is a vector, $-\kappa \nabla \mathrm{T}$, more exactly a vector field.

Gradients and directional derivatives

+ In what direction is $\sin (x) \cos (y)$ increasing most rapidly when $\mathrm{x}=1, \mathrm{y}=2$?

Gradients and directional derivatives

7 Find the directional derivatives $f^{\prime}{ }_{4}(r)$ of the function $f(r)=3 x y z-y^{2}$ at $(1,1,-1)$ in the directions parallel to the line

$$
(x-1)=(y+1) / 4=z / 9 .
$$

$$
\nabla f=\left(\begin{array}{l}
3 y z \\
3 x z-2 y \\
3 x y
\end{array}\right)
$$

Some geometric problems you can work out with the gradient

+ Tangent line and normal line to a level curve, e.g., $x^{2}+y^{2} / 4=2$ at $(1,2)$

Some geometric problems you can work out with the gradient

+ Tangent line and normal line to a level curve, egg., $x^{2}+y^{2} / 4=2$ at (1,2)

$$
=\left[\begin{array}{l}
2 x \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Some geometric problems you can work out with the gradient
\pm Normal vector and normal line to a surface in 3D. For example, the ellipsoid $x^{2}+y^{2}+z^{2} / 4=3$ at $(1,1,2)$

Some geometric problems you can work out with the gradient
\pm Tangent plane to a surface in 3D. For example, the ellipsoid $x^{2}+y^{2}+z^{2} / 4=3$ at $(1,1,2)$

Recall tangent planes:

+ Tangent plane passing through \mathbf{r}_{0} and normal to the vector N :

$$
\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{N}=0
$$

+ Normal vector and normal line to a surface in 3D. For example, the ellipsoid $x^{2}+y^{2}+z^{2} / 4=3$ at $(1,1,2)$

+ Tangent plane to a surface in 3D. For example, the ellipsoid $x^{2}+y^{2}+z^{2} / 4=3$ at $(1,1,2) \longleftarrow r_{j}$

$$
F+\sqrt{F r}\left[\begin{array}{c}
x-1 \\
x-1 \\
z-2
\end{array}\right]:\left\{\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]=0
$$

$$
2 x+2 \pi+z-(6)=0
$$

+ Normal vector, normal line, and
tangent planes to a surface in 3D given as a graph. For example, the saddle

$$
z=(1 / 2)\left(y^{2}-x^{2}\right) \text { at }(1,-3,4)
$$

N must have something to do
with $\nabla\left((1 / 2)\left(y^{2}-x^{2}\right)\right)$, but that can't be the whole story, because that is a 2-D gradient and we're in 3-D here!

+ Normal vector, normal line, and tangent planes to a surface in 3D given as a graph. For example, the saddle z $=(1 / 2)\left(y^{2}-x^{2}\right)$ at $(1,-3,4)$
NeN
in

$$
\left.z-\frac{1}{2}\left(y^{2}+x^{2}\right)+\square\right)
$$

