MATH 2401 - Harrell

A very gradifying lecture

Lecture 11

Scenes from our previous episode

+ Tangent and normal vectors,
+Tangent and normal lines

$$
\begin{aligned}
& z=-(x, y) \\
& 12:=2-2 x 4=0 \\
& 11+\operatorname{cog} 4 x-\frac{\partial f}{\partial x}+\frac{\partial t}{\partial y} j+1 z^{2}
\end{aligned}
$$

Tips for the test - don't lose points for trivial reasons!

+Show some work - There will be no partial credit for what isn't shown. + Make sure the grader sees the key facts /formulae somewhere
+Check your algebra/calculations.
+Common sense. An answer has to be the "right kind of animal."
+Put the answer where indicated.

Monday was fun, so let's do some new
geometric problems

+ Like.....intersecting surfaces.
+ The intersection of two surfaces is usually a curve. How is it oriented - i.e., what is its tangent direction?

Intersection of a plane and a cone

\pm Tangent to the curve at the intersection of 2 surfaces, such as a plane and a cone - the classic conic sections.

$$
x^{2}+y^{2}=z^{2}
$$

Example. $\left\{z^{2}=x^{2}+y^{2}\right\} \cap\{x=1\}$
Method \#1. Worn out curve and differentiate.

$$
\begin{aligned}
& \vec{r}(t)=\left(1, t, \sqrt{1+t^{2}}\right) \\
& \vec{r}^{\prime}(t)=\left(0,1, \frac{t}{\sqrt{1+t^{2}}}\right)\binom{\text { oranymultples }}{\text { exc. } \times 0}
\end{aligned}
$$

The tangent line at $\left(1, y, \sqrt{1+y^{2}}\right)$ is

$$
\begin{aligned}
\{(x, y, z) & =\left(1, y, \sqrt{1+y^{2}}\right)+u\left(0, \sqrt{1+y^{2}}, y\right) \\
& =\left(1, y+u \sqrt{1+y^{2}}, \sqrt{1+y^{2}}+u y\right)
\end{aligned}
$$

Method \#2. Find 2 normal vectors to surfaces and take cross product:

$$
\begin{aligned}
& N_{1}=\left(-\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{-y}{\sqrt{x^{2}+y^{2}}}, 1\right), \hat{N}_{2}=\hat{\imath}, x \rightarrow 1 \\
& \vec{N}_{1} \times \vec{N}_{2}=\left(0,1, \frac{y}{\sqrt{1+y^{2}}}\right)
\end{aligned}
$$

$$
x^{2}+y^{2}=z^{2}
$$

But what about...

+ The tangent to the curve where

$$
x=\sin (\pi y z)
$$

and

$$
z=2 x^{2}-4 y^{2}+1 / 4
$$

as it passes through $(1,1 / 4,2)$?

$$
\begin{aligned}
& x-\sin (\pi y z)=0 \\
& N_{1}=1 \hat{1}+(-n=\omega \hat{y} \\
& W_{1}(r)=\hat{i}^{+\left(-r_{2} \operatorname{costman}\right)}{ }^{2} \\
& \hat{N}_{2}=-4 x \hat{i}+8 y \hat{j}+\hat{k}
\end{aligned}
$$

@ pr.

$$
N_{2}=-4 \hat{1}+2 \hat{\jmath}+\hat{k}
$$

A Tan to curve

$$
N_{1} \times N_{2}=-\hat{\jmath}+2 \hat{k}
$$

The chain rule(s)

$+(\mathrm{d} / \mathrm{dt}) \mathrm{f}(\mathrm{r}(\mathrm{t}))=\nabla \mathrm{f}(\mathrm{r}(\mathrm{t})) \cdot \mathrm{r}^{\prime}(\mathrm{t})$

+ Just like 1-D
+ In components:

$$
\begin{aligned}
\mathrm{df} / \mathrm{dt}=(\partial \mathrm{f} / \partial \mathrm{x}) & \mathrm{dx} / \mathrm{dt}+(\partial \mathrm{f} / \partial \mathrm{y}) \mathrm{dy} / \mathrm{dt} \\
& +(\partial \mathrm{f} / \partial z) \mathrm{dz} / \mathrm{dt}+\ldots
\end{aligned}
$$

+Examples?

The chain rule(s)

+ Suppose the temperature in a plate is $T(x, y)=4 x^{2}-2 x y-4 y^{2}$, and that an object moves in a circle, $r(t)=2 \cos (t) i+2 \sin (t) j$.

At what rate is the temperature changing?

$$
\frac{d T}{d t}=\left[\begin{array}{l}
[6 \cos (t)-4 \sin t)](-2 \sin t) \\
{[-4 \cos (t)-6 \sin t) \cdot 2 \cos (t)}
\end{array}\right.
$$

$$
\begin{aligned}
& \nabla \Gamma(x, y)=(8 x-2 y) \hat{1}+(-2 x-2 y) \hat{\psi} \\
& \vec{r}(t)=2 \cos (t) \hat{\jmath}+2 \sin (t) \hat{\jmath} \\
& \vec{r}(t)=-2 \sin (t) \hat{1}+2 \cos (t) \hat{\jmath}
\end{aligned}
$$

The chain rule(s)

+ What about $u(x, y)$, where x and y depend on s and t ?
+ For example, a change of variables.

The chain rule(s)

+ What about $u(x, y)$, where x and y depend on s and t ?
($\partial \mathrm{u} / \partial \mathrm{s})=(\partial u / \partial x)(\partial \mathrm{x} / \partial \mathrm{s})+(\partial u / \partial \mathrm{y})(\partial \mathrm{y} / \partial \mathrm{s})$
+ Remember: Add up all the possible routes for connecting u to the independent variable.

Word problems

+ Suppose that price of your widgets is $\mathrm{P}(\mathrm{t})$, you are selling at a rate of $\mathrm{R}(\mathrm{t})$ per month, and your expenses are

$$
F(t)+c(t) R(t)
$$

+ How rapidly is your profit changing, if P

$$
\begin{aligned}
& =2, R=3000, F=2500, c=1, \mathrm{P}^{\prime}(\mathrm{t})=.1, \mathrm{R}^{\prime}(\mathrm{t}) \\
& =-20, \mathrm{c}(\mathrm{t})=.05, \text { and } \mathrm{F}^{\prime}(\mathrm{t})=5 \text { ? }
\end{aligned}
$$

Word problems

+ Suppose that price of your widgets is $P(t)$, you are selling at a rate of $R(t)$ per month, and your expenses are $F(t)+c(t) R(t)$
+ Profit $=$ PR - F - c R
d Profit/dt $=R P^{\prime}+(P-c) R^{\prime}-F^{\prime}-c^{\prime} R$

Mean value theorem

+ If f is differentiable on the line segment $a b$, there exists a position c so that

$$
f(b)-f(a)=\nabla f(c) \cdot(b-a)
$$

+ Why is this not as great as in 1D?
A: the gradient doesn't have to point in the direction (b-a), and $|\nabla f(\mathbf{c})|$ isn't the average slope $|f(b)-f(a)| /|b-a|$.

Mean value theorem

+ If f is differentiable on the line segment $a b$, there exists a position c so that

$$
f(b)-f(a)=\nabla f(c) \cdot(b-a)
$$

+ Example: $(0,0)$ to $(1,0), f(x, y)=x+y$.
- $]$ sore pare \bar{c} between $\overrightarrow{0}$ and (1)

$$
\text { st. } \begin{array}{r}
f(0)-f(c)=1-0=1 \\
=(\hat{y}+\hat{y}) \hat{1}=1
\end{array}
$$

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Gradient determines f up to a constant

+ Let U be open and connected, and f and g be differentiable on U . If $\nabla \mathrm{f}=\nabla \mathrm{g}$ on U , then

$$
f(x)=g(x)+C
$$

+ How would you prove this?
+ Good enough to replace f by $\mathrm{f}-\mathrm{g}$ and show that is $\nabla \mathrm{f}$ $=0$ on U , then f is a constant.
+ Connect any two points by "polygonal path" and use M.V. Theorem.

Which $=0$.

Gradient determines f up to a constant

+ Let U be open and connected, and f and g be differentiable on U. If $\nabla f=\nabla f$ on U, then

$$
f(x)=g(x)+C
$$

+ How about an example?
$+\operatorname{Arctan}(y / x)$ vs. $\operatorname{Arccos}\left(x /\left(x^{2}+y^{2}\right)^{1 / 2}\right)$
$\ln [1]:=\{\mathrm{D}[\operatorname{ArcTan}[\mathrm{Y} / \mathrm{x}], \mathrm{I}], \mathrm{D}[\operatorname{ArcTan}[\mathrm{Y} / \mathrm{I}], \mathrm{Y}]\}$
Out[1] $=\left\{-\frac{Y}{x^{2}\left(1+\frac{y^{2}}{x^{2}}\right)} \cdot \frac{1}{x\left(1+\frac{y^{2}}{x^{2}}\right)}\right\}$
$\ln [2]:=\left\{\operatorname{D}\left[\operatorname{ArcCos}\left[\mathrm{x} / \operatorname{Sqrt}\left[\mathbf{x}^{\wedge} 2+\mathrm{Y}^{\wedge} 2\right]\right]\right.\right.$, $\left.\mathbf{x}\right]$.
$\left.\mathrm{D}\left[\mathrm{ArcCos}\left[\mathrm{x} / \operatorname{Sqrt}\left[\mathrm{x}^{\wedge} 2+\mathrm{F}^{\wedge} 2\right]\right], \mathrm{F}\right]\right\}$
Out $[2]=\left\{-\frac{-\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{1}{\sqrt{x^{2}+y^{2}}}}{\sqrt{1-\frac{x^{2}}{x^{2}+y^{2}}}} \cdot \frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2} \sqrt{1-\frac{x^{2}}{x^{2}+y^{2}}}}\right\}$
$\ln [3]:=\operatorname{Simplif}[\mathbf{X X}-\mathbf{X}]$
Out[3] $=\left\{-\frac{y}{x^{2}+y^{2}}+\frac{\sqrt{\frac{y^{2}}{x^{2}+y^{2}}}}{\sqrt{x^{2}+y^{2}}}, x\left(-\frac{y}{\sqrt{\frac{y^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{1}{x^{2}+y^{2}}\right)\right\}$

