Making the best of it when you are up against the wall.

Mathematics $2401 \quad$ Calculus III Fall, 2008

Current reading and homework assignments

- Due Thursday, 9 October:

Reading:

- SHE, Sections 16.7-17.2.
- Review the lecture of 6 October
- Review the lecture of 8 October
- And, just for entertainment, look at some Mathemagic

Exercises:

- SHE, Section 16.7, \# 2-4,10-12,15,24,27-30 (Same as last week. Hand in at least 5 even-numbered exercises.)
- SHE, Section 16.8, \# 3-6,14,18,21-24,29,30 (Same as last week. Hand in at least 5 even-numbered exercises.)
- SHE, Section 16.9, \# 2-6,10-12,17,18,26-28 (Hand in at least 5 even-numbered exercises.)

Current contests

Note about contest entries. These must be entirely your own work and not, for example, copied from the Web, even in modified form (which would be an honor code violation.

Unless otherwise specified, entries should be submitted to the professor, either in hard copy or by e-mail in a universally readable format, such as pdf.

1. Due Thursday, 9 October. This contest has to do with the "funky example" shown in class. Find a formula for a saddle like that one. What do the gradient and Hessian matrix tell you about the funky saddle point at the origin $x=y=0$? Carefully discuss the tangent planes and the (3D) normal vectors at points near the origin.

- Pliutle-known tale from the 1001 Mights:
- DIV Baba and the shady gradient wallahs.
+ One day ATli Baba went ta the bazaar, because he very much needed a function and iss gradient. Thu the bazar he mel lure gradient wallahs. The first of them came to him and epsatie thusly," " beseemed sire, There is a wondrous function \mathcal{F} will sell your for len pieces of silver, and its gradient is

$$
\nabla f=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j .
$$

Baba and the shady gradient wallahs.

+ Then came a second gradient wallah and uugged on Slli Gaba's sleave, proclaiming. "Pire, believe not yon notorious liar! Qerily

$$
\nabla f=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j
$$

is bogus and counterfeit, and can in no wise be a gradient. ©But $I_{\text {can sell you a wondrous function for only } 9 \text { pieces of silver, and }}$ its true gradient is

$$
\nabla f=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j
$$

Baba and the shady gradient wallahis.
(2)Whereupon the first merchant sprang at the second and a viclent fight ensued, with entertaining clashes of seimitars and much blood and gore, whilst OPII GBaba crouched against the wall, much with biting of the fingernails. OPron both merchants lay decapitated. and poor. Olli Baba despaired of abtaining the function with the gradient. Then as usual his faithful and clever serwant girl Mhargiana appeaved and saved Olli Baba's@\% S@@(!. saying. "Oh. Mbaster, do not despair, for one gradient wallah spake the truth, and \mathscr{F} shall reveal both gradient and function!"

Which vector field is truly a gradient, and what is f ?

$$
\begin{aligned}
& \nabla f=\left(y \cos (x y)-y^{2}\right) \mathfrak{i}+\left(x \sin (x y)-x^{2}+1\right) j \\
& \nabla f=\left(y \cos (x y)-y^{2}\right) \mathfrak{i}+(x \cos (x y)-2 x y+1) j
\end{aligned}
$$

$$
\begin{aligned}
& \nabla f=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j \\
& \nabla f=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j
\end{aligned}
$$

In general,

$$
\nabla f=P(x, y) i+Q(x, y) j, \text { where }
$$

$$
P(x, y)=f_{x} \text { and } Q(x, y)=f_{y}
$$

$$
\begin{aligned}
& \nabla f=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j \\
& \nabla f=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j
\end{aligned}
$$

${ }^{* * * *}$ Is $P_{y}=f_{y x}$ the same as $Q_{x}=f_{x y} ?^{* * * *}$

$$
\begin{aligned}
& \nabla f_{1}=(y \cos (x)) \frac{\vec{y}^{2}}{}+\frac{+\left(x \sin (x y)-x^{2}+1\right) j}{\nabla f_{2}=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j}
\end{aligned}
$$

${ }^{* * * *} \mid s P_{y}=f_{y x}$ the same as $Q_{x}=f_{x y} ?^{* * * *}$

$$
\partial P_{1} \partial y=\cos (x y)-x y \sin (x y)-2 y
$$

is not equal to
$\partial Q_{1} / \partial x=\sin (x y)+x y \cos (x y)-2 x$.

$$
\nabla f_{1}=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j
$$

$$
y f_{2}=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j
$$

${ }^{* * * *} I S P_{y}=f_{y x}$ the same as $Q_{x}=f_{x y} ?^{* * * *}$
Whereas

$$
\partial P_{2} \partial y=\cos (x y)-x y \sin (x y)-2 y=\partial Q_{2} / \partial x
$$

as it should.

Ah, but what is f ?

+ We can integrate in x for fixed y or vice versa. The constant of integration if you" fix" y temporarily might vary when y is no longer held fixed. It is therefore a function of y - but not x.
+ And conversely, switching x and y

$$
\begin{aligned}
& \nabla f=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j \\
& \nabla f=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j
\end{aligned}
$$

$P_{y}=f_{y x}$ the same as $Q_{x}=f_{x y}$?****
Do it both ways and compare!

$$
\nabla f=\left(y \cos (x y)-y^{2}\right) i+\left(x \sin (x y)-x^{2}+1\right) j
$$

$$
\nabla f=\left(y \cos (x y)-y^{2}\right) i+(x \cos (x y)-2 x y+1) j
$$

${ }^{* * * *} \mid S P_{y}=f_{y x}$ the same as $Q_{x}=f_{x y}$? ${ }^{* * * *}$ absolute constant

$$
f(x, y)=\sin (x y)-x y^{2}+y+C^{2}
$$

An example from last week

+ Let $f(x, y)=x^{2}+y^{2}+x+y$ on the closed unit disk. Find its absolute max and min.
+ Is there an easier way?

Example

+ Let $f(x, y)=x^{2}+y^{2}+x+y$ on the closed unit disk. Find its absolute max and min. Previous solution:
+ Only 1 critical pt: $2 x+1=0=2 y+1 \Rightarrow$ $x=y=-1 / 2$.
+ On the boundary write $x=\cos t, y=\sin t$
$+f$ becomes $1+\cos t+\sin t$ and we are back in KG Calculus.
+Check 3 possibilities.

Example

+ Plug the three candidates into
$f(x, y)=x^{2}+y^{2}+x+y:$
+ The $f(-1 / 2,-1 / 2)=-1 / 2=-0.5$
Minnie!

$$
\begin{aligned}
& +f\left(2^{-1 / 2}, 2^{-1 / 2}\right)=1+2^{1 / 2}=2.414214 \ldots \\
& +f\left(-2^{-1 / 2},-2^{-1 / 2}\right)=1-2^{1 / 2}=-0.414214 \ldots
\end{aligned}
$$

This candidate is a loser!

Constraints, regions, and side conditions

+ These are all pretty much the same! + We can think of it as a region when x, y, z are position variables, even when the physical meaning is entirely different:
+ Temperature, pressure, volume
+ Cost of various items, sales

Example

+Let $f(x, y)=x^{3} y^{4} z^{5}$ with the side conditions $x, y, z \geq 0, x+y+z \leq 1$.

+ Point to ponder: What does the feasible set look like?

Example

+ Let $f(x, y)=x^{3} y^{4} z^{5}$ with the side conditions $x, y, z \geq 0, x+y+z \leq 1$.
+Point to ponder: What does the feasible set look like?
+A tetrahedron, a 4-sided figure each face of which is a triangle.
+ Do you see this?

Examples

+ How big can the product of two numbers be if you fix the sum?
+ How small?
+ How big/small can the sum be if you fix the product?

Examples

+How big can the product of two numbers be if you fix the sum?

+ Objective function: $f(x, y)=x y$
+Constraint: $x+y=12$ (say)
+Plug: $f \rightarrow x(12-x)$. Maximize this with Calc I when $0=12-2 x_{\text {. }}$, so $x_{\text {. }}=6$. Also $y .=6$.

Interpretation

+ How big can the product of two numbers be if you fix the sum?
+ This is the same as maximizing the area $x y$ of a rectangle of sides x and y, when you fix the perimeter $2(x+y)$. It's at least plausible that the square is the best shape, so $x=y$.

Examples

+OK... So how big can the product of three numbers be if you fix the sum?
+Objective function: $f(x, y)=x y z$
+Constraint: $x+y+z=12$ (say)

Examples

+ Or.... So how big can the product of four numbers be if you fix the sum?

Meet a great optimist

- er, optimizer, -

Joseph-Louis Lagrange

The Lagrange condition

\pm A constrained max or min subject to $\mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ satisfies...

+ Think: $f(r(t))$ will be maximized as long as the curve $r(t)$ stays on the curve or surface $C=\{r: g(r)=0\}$.
+What do we know about the scalar
function $h(t)=f(r(t))$ at max or \min ?

The Lagrange condition

+ Ans: $0=\nabla f(r(t)) \cdot r^{\prime}(t)$, and the velocity r ' (t) can have any direction parallel to C .
+ So $\nabla \mathrm{f}(\mathrm{r}(\mathrm{t}))$ has to be perpendicular to the surface or curve $\mathrm{C}=\{\mathrm{r}: \mathrm{g}(\mathrm{r})=0\}$.
+ Don't we know another gradient that is perpendicular to this level set of the function g ?
+ Sure. $\nabla \mathrm{g}$ is also perpendicular to the level sets of g . So $\nabla \mathrm{f}$ and $\nabla \mathrm{g}$ must be parallel.

The Lagrange condition

+ Here is a pictorial understanding of the condition:

Onsirained onz. $f(x, y)$ Objective in
Consraint. $\quad ~ d(x, n)=c \quad$ Larrance.
Candidate of Consiaind mu:

The Lagrange condition

+ Assuming f and C are "smooth," at a boundary maximum point \mathbf{x}_{0} where $\nabla \mathrm{g}\left(\mathrm{X}_{0}\right) \neq \mathbf{0}$,

$\nabla f\left(\mathrm{x}_{0}\right)=\lambda \nabla \mathrm{g}\left(\mathrm{x}_{0}\right)$
for some scalar value λ.

Oolective

$$
\begin{aligned}
& f(x, y)=y^{2}+y^{2}+x+y \\
& \nabla_{1}=(2 x+1) \hat{}=(2 y+1) \hat{\jmath}
\end{aligned}
$$

(onrain). Doundorn is a tove cure is

$$
g(x, y)=x^{2}+y^{2}(z=1)
$$

$7 y=2 x+2 y \hat{a}$

An example from last week

+ Let $f(x, y)=x^{2}+y^{2}+x+y$ on the closed unit disk. Find its absolute max and min.

Let's look at level curves:

An example from last week

+ Let $f(x, y)=x^{2}+y^{2}+x+y$ on the closed unit disk. Find its absolute max and min.
$\ln (1)=\operatorname{ContourPlot}\left[x^{\wedge} 2+y^{\wedge} 2+x+y,\{x,-1.2,1.2\},\{y,-1.2,1.2\}\right]$
not is
Let's look at level curves:

Examples

+ Closest point to the origin of the plane $x+2 y-3 z=6$.
+ Extrema of $2 x+y$, assuming

$$
x^{2}+2 y^{2}=18 .
$$

Examples

+ Closest point to the origin of the plane $x+2 y-3 z=6$.
$+f(r)$ could be $x^{2}+y^{2}+z^{2}$, rather than the distance. This avoids differentiating square roots, and it is just as good for answering the question.
$+g(r):=x+2 y-3 z-6$

Examples

+ Closest point to the origin of the plane g保 $=x+2 y-3 z=6$.
$f=(\text { dist tram } \overrightarrow{0})^{2}=x^{2}+y^{2}+z^{2}$

+ Extrema of $2 x+y$, assuming

$$
x^{2}+2 y^{2}=18 .
$$

Examples

+ Closest point to the origin of the plane保 $=x+2 y-3 z=6$.
$f=(\text { dist from } \overrightarrow{0})^{2}=x^{2}+y^{2}+z^{2}$
$\left.\left.\nabla f=\left[\begin{array}{c}2 x \\ 2 y \\ 2 y\end{array}\right]=\lambda\left[\begin{array}{c}1 \\ 1 \\ -3\end{array}\right]\right\} \begin{array}{l}2\end{array}\right]=2 x$
+ Extrema of $2 x+y$, assuming $x^{2}+2 y^{2}=18$.

Examples

+ How big can the product be on the unit circle?
+ On the square $0 \leq x, y \leq 1$?

Examples

+How big can the product of two numbers be if you fix the sum?

gix.b. $x+y$

+ How small?

+ How big/small can the sum be if you fix the product?

