Sart One, or

If you must be wrong, how little wrong can you be?

How does the Army beta test correlate with the SAT?

Scatter Plot, SAT vs. Beta Test

$$
\mathrm{N}=102, r=0.77
$$

95\% Confidence Interval: $r=0.68$ to 0.84

Source: army.mil

Error analysis and optimization

+ You have a bucket of data $\left\{\left(x_{i}, y_{i}\right)\right\}$. They don't really fit on a line, but what is the best fit in the least
-squares sense?
+ You want to minimize

$$
\Sigma_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\left(\mathrm{mx} \mathrm{x}_{\mathrm{i}}+\mathrm{b}\right)\right)^{2}
$$

+But what are the \%(@!! variables?
+ANSWER: m and b !

Error analysis and optimization

+ So we take the gradient of the objective function

$$
f(m, b):=\sum_{i}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}
$$

with respect to variables m and b !

+ Critical points when
$+0=-2 \sum_{i} x_{i}\left(y_{i}-\left(\mathrm{mx}_{\mathrm{i}}+\mathrm{b}\right)\right)$ and
$+0=-2 \sum_{i}\left(y_{i}-\left(m x_{i}+b\right)\right)$

$$
\frac{\partial}{\partial m} \sum_{i} \Rightarrow(m, h)=0
$$

$m+m b=u$

$$
\frac{\partial}{\partial b}=(m b)=0
$$ $\operatorname{mon}+m m=\sim$

Error analysis and optimization

+ Rewrite

$$
\begin{aligned}
& +0=-2 \sum_{i} x_{i}\left(y_{i}-\left(m x_{i}+b\right)\right) \text { and } \\
& +0=-2 \sum_{i}\left(y_{i}-\left(m x_{i}+b\right)\right)
\end{aligned}
$$

+ In the form of a linear system of equations like ___m + ___ $b=$

$$
\begin{gathered}
\left(\sum_{i} x_{i}^{2}\right) m+\left(\sum_{i} x_{i}\right) b=\sum_{i} x_{i} y_{i} \\
\left(\sum_{i} x_{i}\right) m+N \quad b=\sum_{i} y_{i}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\sum x_{i}^{2} & \sum x_{i} \\
\sum x_{i} & N
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum x_{i} y_{i} \\
\sum y_{i}
\end{array}\right] } \\
& \Rightarrow\left[\begin{array}{l}
m \\
b
\end{array}\right]=\frac{1}{N \Sigma x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{ll}
N & -\sum x_{i} \\
-\sum x_{i} & \sum x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\sum x_{i} y_{i} \\
\sum y_{i}
\end{array}\right] \\
&=\frac{1}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{l}
N \sum x_{i} y_{i}-\sum x_{i} \sum y_{j} \\
\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{j} y_{j}
\end{array}\right]
\end{aligned}
$$

Example

+ Best linear fit to $(0,1),(1,3),(2,4)$ + Calculate:

$$
\begin{aligned}
&+N=3 \\
&+\Sigma_{i} x_{i}=3 \\
&+\Sigma_{i} y_{i}=8 \\
&+\Sigma_{i} x_{i}{ }_{i}^{2}=5 \\
&+\Sigma_{i} x_{i} y_{i}=11 \\
&+m=9 / 6, b=7 / 6
\end{aligned}
$$

Other best fits

+ Best quadratic, cubic, etc.
+ Best combination of sines and cosines ("Fourier series").
+ Other functions representing your preconceptions about the data.

The Lagrange condition

+ Assuming f and C are "smooth," at a boundary maximum point \mathbf{x}_{0} where $\nabla \mathrm{g}\left(\mathrm{X}_{0}\right) \neq \mathbf{0}$,

$\nabla f\left(\mathrm{x}_{0}\right)=\lambda \nabla \mathrm{g}\left(\mathrm{x}_{0}\right)$
for some scalar value λ.

What if we have more than
one constraint?

Example

+ The intersection of two planes, such as

$$
x+2 y-3 z=6
$$

and

$$
x+y+z=1
$$

is a line. What is the closest point on the line to the origin?

Lagrange with two constraints

+ Assuming f is "smooth," and constrained by two "smooth" functions,
$+g(x)=0$, and
$+h(x)=0$.
+ Lagrange's condition for a doubly constrained critical point is

$$
\nabla f\left(\mathrm{x}_{0}\right)=\lambda \nabla \mathrm{g}\left(\mathrm{x}_{0}\right)+\mu \nabla \mathrm{h}\left(\mathrm{x}_{0}\right)
$$

for some scalar values λ and μ.

Example

+Objective function: $f(x, y, z)=x^{2}+y^{2}+z^{2}$ + Lagrange says:

$$
\begin{aligned}
& 2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}= \\
& \quad \lambda(1 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k})+\mu(1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k})
\end{aligned}
$$

Five unknowns (x, y, z, λ, μ). This vector equation represents three scalar eqns. We need two more...

Lagrange conditions

constraints

Approximating with differentials

+ The differential way of writing gradients:

$$
d f=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y+\frac{\partial f}{\partial z} \Delta z
$$

or, as it is often written in science and engineering,

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

Approximating with differentials

+ Another point of view:

$$
d f=\nabla f \cdot d \mathbf{x}
$$

(just like $\mathrm{df}=\mathrm{f}^{\prime} \mathrm{dx}$)
Our book writes h in place of $d x$.

Approximating with differentials

+ Example. Suppose you have a rectangle intended to have dimensions 3 by 4 cm .
+ Estimate the change in the area if x is too big by 0.1 and y is too small by 0.2 .
+ If $A(x, y)=x y, d A=y \Delta x+x \Delta y$. With $x=3$,

$$
\begin{gathered}
y=4, \Delta x=0.1, \Delta y=-0.2 \\
d A=0.4-0.6=-0.2
\end{gathered}
$$

The area is less by approximately $0.2 \mathrm{~cm}^{2}$.

The End

of first lecture

Sart Two, or

ᄃ $\Sigma \Sigma \Sigma$,

$\Delta \Delta \Delta$,

 and SSCopyright 2008 by Evans M. Harrell II.

Each slice has width
Δx

Each slice has
volume
$A(x) \Delta x$
Total volume $\approx a$
Riemann sum
$\sum_{i} A\left(x_{i}\right) \Delta x$

Now take a close look at the slices:

Why, there's a little coordinate grid on there! And, and...

Now take a close look at the slices:

So each $A(x)$ is itself an integral of the form $\int z d y$.
Suppose the height of a rectangular region is $z=h(x, y)$.
The volume is an iterated integral,

$$
\operatorname{Vol}(\Omega)=\int_{a}^{b}\left(\int_{c}^{d} h(x, y) d y\right) d x \quad \begin{aligned}
& \text { Integrate over } \\
& \mathrm{h}(\mathrm{x}, \mathrm{y}) \text { to get } \mathrm{A}(\mathrm{x}) .
\end{aligned}
$$

This potato has been sliced along the x -axis with width $\Delta \mathrm{x}$.

What happens when we slice it a second time along the y -axis with width Δy ?

FRIES!

The volume of a vertical French fry is (hgt • $\Delta x \Delta y$), (or pretty close)

Double Riemann whammy:

$$
\operatorname{Vol}(\Omega)=\int_{a}^{b}\left(\int_{c}^{d} h(x, y) d y\right) d x
$$

This is a definite integral plugged into a second definite integral. In other words, it is a delicate kind of limit of a Rieman sum plugged into another limit of a Rieman sum. Ouch!

$$
\sum_{j=1}^{N}\left(\sum_{k=1}^{M} h\left(x_{j}, y_{k}\right) \Delta x \Delta y\right)
$$

Anatomy of the notation

$$
\int_{a}\left(\int_{c}^{d} h(x, y) d y\right) d x=\int_{a}^{b} \int_{c}^{d} h(x, y) d y d x=\int_{R} h(x, y) d x d y y^{2}+\sum_{j=1}^{N}\left(\sum_{k=1}^{M} a_{j k}\right)=\sum_{j=1}^{N} \sum_{k=1}^{M} a_{j k} \quad \$
$$

Do the inside operation first. (Does it matter?)

Double Riemann whammy:

$$
\operatorname{Vol}(\Omega)=\int_{a}^{b}\left(\int_{c}^{d} h(x, y) d y\right) d x
$$

This is the one we write and calculate.

This is the one we think about and get the computer to calculate.

$$
\sum_{j=1}^{N}\left(\sum_{k=1}^{M} h\left(x_{j}, y_{k}\right) \Delta x \Delta y\right)
$$

Examples:

A loaf of bread sits in a rectangular pan,

$$
R=\{0 \leq x \leq 12,0 \leq y \leq 4\}
$$

The height of the bread at point (x, y) is $5+(x / 12)-$ $\cos (\pi y / 2)$ (units are inches). What is the volume of the loaf?

Here is one slice, of thickness Δx :

First integral:

$\ln [18]:=\operatorname{Integrate}[5+(x / 12)-\operatorname{Cos}[\operatorname{Pi} / / 2],\{Y, 0,4\}]$
Out $[16]=\frac{60+x}{3}$

Second integral:

$\ln [17]=$ Integrate[(60 + $\mathbf{x}) / 3,\{\mathbf{x}, \mathbf{0}, 12\}]$
Out[17]= 264

- How about doing it the other way?

First integral:

```
ln[18]:= Integrate[5+(x/12)-Cos[PiY/2], {x, 0, 12}]
Out[18]= 66-12 Cos[\frac{\piY}{2}]
```


Second integral:

$\ln [19]:=$ Integrate $\left[66-12 \operatorname{Cos}\left[\frac{\pi Y}{2}\right],\{Y, 0,4\}\right]$
Out[19]= 264

