Part One, or

# If you must be wrong, how little wrong can you be?

Copyright 2008 by Evans M. Harrell II.



# How does the Army beta test correlate with the SAT?

Scatter Plot, SAT vs. Beta Test N = 102, r = 0.77 95% Confidence Interval: r = 0.68 to 0.84



## Error analysis and optimization

You have a bucket of data {(x<sub>i</sub>, y<sub>i</sub>)}. They don't really fit on a line, but what is the best fit in the *least* -squares sense?
You want to minimize Σ<sub>i</sub>(y<sub>i</sub>-(mx<sub>i</sub>+b))<sup>2</sup>
But what are the %(@!! variables? +ANSWER: m and b !

## Error analysis and optimization

So we take the gradient of the objective function

 f(m,b) := Σ<sub>i</sub>(y<sub>i</sub>-(mx<sub>i</sub>+b))<sup>2</sup>
 with respect to variables m and b !

 Critical points when

 + 0 = -2 Σ<sub>i</sub>x<sub>i</sub>(y<sub>i</sub>-(mx<sub>i</sub>+b)) and
 + 0 = -2 Σ<sub>i</sub>(y<sub>i</sub>-(mx<sub>i</sub>+b))

2 2 - - - (m, h) = 0 7 M Me mtmmb=me 2 4 (mb)=0 in mtmb=n

## Error analysis and optimization

\* Rewrite +0 = -2  $\Sigma_i x_i (y_i - (mx_i + b))$  and +0 = -2  $\Sigma_i (y_i - (mx_i + b))$ \* In the form of a linear system of equations like \_\_\_\_\_m + \_\_\_\_ b = \_\_\_\_: ( $\Sigma_i x_i^2$ )m + ( $\Sigma_i x_i$ ) b =  $\Sigma_i x_i y_i$ ( $\Sigma_i x_i$ )m + N b =  $\Sigma_i y_i$ 

$$\begin{bmatrix} \Sigma x_{i}^{2} & \Sigma x_{i} \\ \Sigma x_{i} & N \end{bmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} \Sigma x_{i} y_{i} \\ \Sigma y_{i} \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} m \\ b \end{pmatrix} = \frac{1}{N\Sigma x^{2} - (\Sigma x_{i})^{2}} \begin{bmatrix} N & -\Sigma x_{i} \\ -\Sigma x_{i} & \Sigma x_{i}^{2} \end{bmatrix} \begin{bmatrix} \Sigma x_{i} y_{i} \\ \Sigma y_{i} \end{bmatrix}$$
$$= \frac{1}{N\Sigma x^{2} - (\Sigma x_{i})^{2}} \begin{bmatrix} N \Sigma x_{i} y_{i} - \Sigma x_{i} \Sigma y_{i} \\ -\Sigma x_{i} & \Sigma x_{i}^{2} \end{bmatrix} \begin{bmatrix} X \cdot y_{i} \\ \Sigma y_{i} \end{bmatrix}$$

#### Example

#### • Best linear fit to (0,1), (1, 3), (2,4)• Calculate: • N = 3 • $\Sigma_i x_i = 3$ • $\Sigma_i y_i = 8$ • $\Sigma_i x_i^2 = 5$ • $\Sigma_i x_i y_i = 11$ • m = 9/6, b = 7/6



# Other best fits

Best quadratic, cubic, etc.

 Best combination of sines and cosines ("Fourier series").

 Other functions representing your preconceptions about the data.

# The Lagrange condition

Assuming f and C are "smooth," at a boundary maximum point x<sub>0</sub> where
 ∇g(x<sub>0</sub>) ≠ 0,

 $\nabla f(\mathbf{x}_0) = \lambda \nabla g(\mathbf{x}_0)$ for some scalar value  $\lambda$ .

# What if we have more than one constraint?

### Example

The intersection of two planes, such as x + 2 y - 3 z = 6

and

x + y + z = 1

is a line. What is the closest point on the line to the origin?

### Lagrange with two constraints

Assuming f is "smooth," and constrained by two "smooth" functions,
+g(x) = 0, and
+h(x) = 0.
+ Lagrange's condition for a doubly constrained critical point is ∇f(x<sub>0</sub>) = λ ∇g(x<sub>0</sub>) + μ ∇h(x<sub>0</sub>) for some scalar values λ and μ.

### Example

 Objective function: f(x,y,z) = x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>
 Lagrange says: 2xi + 2yj + 2zk = λ (1i+2j-3k) + μ (1i+1j+1k)
 Five unknowns (x,y,z,λ,μ). This vector equation represents three scalar eqns. We need two more...

#### Lagrange conditions

h[2]:= Solve[{2 x == lambda + mu, 2 y == 2 lambda + mu, 2 z == 3 lambda + mu, x + 2 y - 3 z == 6, x + y + z == 1}, {x, y, z, lambda, mu}]

 $Out[2]=\left\{\left\{x \rightarrow \frac{11}{6}, y \rightarrow \frac{1}{3}, z \rightarrow -\frac{7}{6}, lambda \rightarrow -3, mu \rightarrow \frac{20}{3}\right\}\right\}$ 

constraints

## Approximating with differentials

The differential way of writing gradients:

$$df = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z$$

or, as it is often written in science and engineering,

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$$

## Approximating with differentials

Another point of view:

$$df = \nabla f \cdot d\mathbf{x}$$

(just like df = f' dx)

Our book writes **h** in place of dx.

### Approximating with differentials

Example. Suppose you have a rectangle intended to have dimensions 3 by 4 cm.
Estimate the change in the area if x is too big by 0.1 and y is too small by 0.2.
If A(x,y) = xy, dA = y Δx + x Δy. With x = 3, y = 4, Δx = 0.1, Δy = -0.2, dA = 0.4 - 0.6 = -0.2
The area is less by approximately 0.2 cm<sup>2</sup>.





# ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ,

# 

Copyright 2008 by Evans M. Harrell II.







## Now take a close look at the slices:



Why, there's a little coordinate grid on there! And, and...

#### Now take a close look at the slices:



So each A(x) is itself an integral of the form  $\int z \, dy$ .

Suppose the height of a rectangular region is z = h(x,y). The volume is an *iterated integral*,

$$Vol(\Omega) = \int_{a}^{b} \left( \int_{c}^{d} h(x, y) dy \right) dx$$

Integrate over

h(x,y) to get A(x).

This potato has been sliced along the x-axis with width  $\Delta x$ .

What happens when we slice it a second time along the y -axis with width  $\Delta y$ ?





#### FRIES!

The volume of a vertical French fry is (hgt •  $\Delta x \Delta y$ ), (or pretty close)

#### Double Riemann whammy:

$$Vol(\Omega) = \int_{a}^{b} \left( \int_{c}^{d} h(x, y) dy \right) dx$$

This is a definite integral plugged into a second definite integral. In other words, it is a delicate kind of limit of a Rieman sum plugged into another limit of a Rieman sum. *Ouch!* 

$$\sum_{j=1}^{N} \left( \sum_{k=1}^{M} h(x_j, y_k) \Delta x \Delta y \right)$$

$$\int_{a}^{b} \left( \int_{c}^{d} h(x,y) dy \right) dx = \int_{a}^{b} \int_{c}^{d} h(x,y) dy dx = \int_{R}^{b} h(x,y) dx dy$$

$$\sum_{j=1}^{N} \left( \sum_{k=1}^{M} a_{jk} \right) = \sum_{j=1}^{N} \sum_{k=1}^{M} a_{jk}$$

Do the inside operation first. (Does it matter?)

#### Double Riemann whammy:

$$Vol(\Omega) = \int_{a}^{b} \left( \int_{c}^{d} h(x, y) dy \right) dx$$

This is the one we write and calculate.

This is the one we think about and get the computer to calculate.

$$\sum_{j=1}^{N} \left( \sum_{k=1}^{M} h(x_j, y_k) \Delta x \Delta y \right)$$

#### Examples:

A loaf of bread sits in a rectangular pan,

 $R = \{0 \le x \le 12, 0 \le y \le 4\}.$ 

The height of the bread at point (x,y) is 5 + (x/12) -  $cos(\pi y/2)$  (units are inches). What is the volume of the loaf?



#### First integral:

 $\ln[16] := Integrate[5 + (x / 12) - Cos[Piy / 2], \{y, 0, 4\}]$   $Out[16] = \frac{60 + x}{3}$ 

#### Second integral:

ln[17]:= Integrate[(60 + x)/3, {x, 0, 12}]

Out[17]= 264

#### How about doing it the other way?

#### First integral:

ln[18]:= Integrate[5 + (x / 12) - Cos[Pi y / 2], {x, 0, 12}]

Out[18]= 66 - 12 Cos  $\left[\frac{\pi y}{2}\right]$ 

#### Second integral:

$$\ln[19] = \text{Integrate} \left[ 66 - 12 \cos \left[ \frac{\pi y}{2} \right], \{y, 0, 4\} \right]$$

Out[19]= 264