No matter which way you slice it

Practicalities of doing double integrals.

$$
\begin{gathered}
\text { A double integral } \\
\text { is }
\end{gathered}
$$

an iterated integral.

From the previous episode

+ Let's take one favorite function, like $f(x, y)=x y$, and integrate it over lots of regions.
+ What does the integral of $x y$ over a region in the first quadrant ($x, y>0$) represent?
+ What if the region is in the second quadrant ($\mathrm{x}<0, \mathrm{y}>0$)?

What if the integration region is not a rectangle?

+ Fairly easy cases:

$$
\begin{aligned}
& 0 \leq x \leq 2 \\
& x \leq y \leq 2
\end{aligned}
$$

What if the integration region is not a rectangle?

\pm Not so easy cases:

$$
\begin{aligned}
& 1-y \leq x \leq y \\
& ? ? \leq y \leq 4
\end{aligned}
$$

Limit switcheroo

$$
\int_{x=0}^{x=2} \int_{y=0}^{y=x^{2}} x y d y d x=
$$

$0 \leq x \leq 2$ blach inkm. $\sqrt{y} \leqslant x \leqslant \infty$

Dang! These South Texas buzzards ate up some of the slides ... I sure hope they weren't the ones where the prof gave the class hints about the test!

Limit switcheroo

\pm Which order of integral is better?

+ Value is always the same, "No matter which way you slice it"
+ In one direction you may have to add two different-looking integrals. Think like a CS major: How many steps are in the calculation?
+Or, there is another possibility...

Limit switcheroo example

+Which order of integral is better?

$$
\int_{0}^{\infty} \int_{y}^{\infty} e^{-x^{2}} d x d y
$$

Limit switcheroo example

+ Which order of integral is better?

$$
\begin{aligned}
& \int_{0}^{y \leq \infty} \int_{y}^{x \leq \infty} \int_{y}^{\infty} e^{-x^{2}} d x d y \\
& y \geq 0 \quad x \geq y \text { If } f(x x, \text { know } y \geq 0 \\
& y \leq x
\end{aligned}
$$

Using symmetries

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\cos \frac{\pi}{4} x} e^{y \cos x} \sinh x^{3} d y d x=
$$

Using symmetries

Ω : Fractions of the unit circle

Using polar coordinates

Ω : Fractions of the unit circle

Polar aria element

Area from r to $r+A r$ and θ to $\theta+A \theta$ is difference of 2 sectors.

$$
\begin{aligned}
A & =\pi(r+\Delta r)^{2} \frac{\Delta \theta}{2 \pi}-\pi r^{2} \frac{\Delta \theta}{2 \pi} \\
& =\frac{1}{2}\left(r^{2}+2 r \Delta r+(\Delta r)^{2}-r^{2}\right) \Delta \theta=r \Delta r \Delta \theta+\frac{(\Delta r)^{2}}{2} \Delta \theta
\end{aligned}
$$

The End

