If you don't like the limits put on you, change them!

An alternative to try out at homecoming

eu du/dx
$e^{x} d x$
cosine secant tangent sine
3.14159
integral radical $\mu \mathrm{dv}$
slip stick, slide rule, MIT!
Go-o-o-o-o Tech!

Using polar coordinates

Ω : Fractions of the unit circle

A polar machete

Polar aria element

Area from r to $r+A r$ and θ to $\theta+A \theta$ is difference of 2 sectors.

$$
\begin{aligned}
A & =\pi(r+\Delta r)^{2} \frac{\Delta \theta}{2 \pi}-\pi r^{2} \frac{\Delta \theta}{2 \pi} \\
& =\frac{1}{2}\left(r^{2}+2 r \Delta r+(\Delta r)^{2}-r^{2}\right) \Delta \theta=r \Delta r \Delta \theta+\frac{(\Delta r)^{2}}{2} \Delta \theta
\end{aligned}
$$

There is a cancellation of the r^{2} 's, and when we reduce to the infinitesimal level we neglect $(\Delta r)^{2}$, leaving:

$$
\mathrm{dA}=\mathrm{rdr} \mathrm{~d} \theta .
$$

Don't forget the extra factor of r !

Tip: Remember the dimensions. Area is measured in cm^{2}. Both r and $d r$ have units cm^{1}.

Example

+ Integrate xy over the part of the unit circle in the first quadrant below the line $\mathrm{y}=\mathrm{x}$.
+ The integrand $\mathrm{x} y$ becomes

$$
r \cos (\theta) r \sin (\theta)=r^{2} \sin (2 \theta) / 2
$$

+ The limits of integration are

$$
0 \leq r \leq 1,0 \leq \theta \leq \pi / 4
$$

Example - compare Cartesian and polar integrals

+Cartesian calculation:

```
ln[5]:= Integrate[xy, {x, y, Sqrt[1-y^2]}]
Out[5]= = y 
ln[0]:= Integrate[%, {y, 0, 1/Sqrt [2]}]
Out[6]=}=\frac{1}{16
```

Don't forget!

+ Polar calculation:

```
In[7]:= Integrate[( (r^2 sin[2 theta] / 2) * r, {r, 0, 1}]
Out[7]=}\frac{1}{4}\operatorname{Cos[theta] Sin [theta]
ln[8]:= Integrate[%, {theta, 0, Pi/4}]
Out[8]=}\frac{1}{16
\(\operatorname{Out}[7]=\frac{1}{4} \operatorname{Cos}\) [theta] Sin [theta]
```


One of the all-time great integrals

$$
\int_{0}^{\infty} e^{-x^{2}} d x=
$$

One of the all-time great integrals

A really weird approach. First we square the integral, which we'll call I:

$$
I^{2}=\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y
$$

Right?

One of the all-time great integrals

$$
I^{2}=\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y
$$

One of the all-time great integrals

$$
I^{2}=\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y
$$

$$
=\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

One of the all-time great integrals

$$
I^{2}=\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y
$$

$$
=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

One of the all-time great integrals

$$
\begin{aligned}
& I^{ \pm} \int_{0}^{\infty} e^{-x^{2}} d x= \\
& I^{2}=\int_{0}^{\infty} e^{x^{2}} d x \int_{0}^{\infty} e^{y^{2}} d y \\
& =\int_{R}^{0} e^{-x^{2}-y^{2}} d x d y=\int_{R} e^{-r^{3} y} r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-\pi^{2}} d^{R} d^{2} d \theta
\end{aligned}
$$

Averages

Integrate, but divide by the length (1-D), area (2 -D), or volume (3-D).

Example: Your pizza has radius 20 cm and at position (x, y) its temperature is

$$
80+2 x-\left(x^{2}+y^{2}\right) / 20 \text {. (Celsius) What's the }
$$

average temperature?

Averages - some tricks

Problem: Find the average of

$$
80+2 x-\left(x^{2}+y^{2}\right) / 20
$$

on the pizza.
Trick 1. The integral of $f+g$ is the integral of $f+$ the integral of g. So the ave. of $f+g$ is the ave. of $f+$ the ave. of g. And the ave. of 80 is 80 .

Averages - some tricks

Problem: Find the average of

$$
80+2 x-\left(x^{2}+y^{2}\right) / 20
$$

on the pizza.
Trick 1. The integral of $f+g$ is the integral of $f+$ the integral of g. So the ave. of $f+g$ is the ave. of $f+$ the ave. of g. And the ave. of 80 is 80 .

Trick 2. $f(x)=x$ is an odd function, and this is an even pizza (not changed by $x \leftrightarrow-x$). So...

Averages - some tricks

Problem: Find the average of $80+2 x-\left(x^{2}+y^{2}\right)$ /20 on the pizza.
Trick 3. Use the right coordinate system. Polar.

$$
\frac{1}{\pi 20^{2}} \int_{\Omega}\left(-\frac{x^{2}+y^{2}}{20}\right) d x d y=-\frac{1}{\pi 20^{3}} \int_{0}^{2 \pi} \int_{0}^{20} r^{2} \mathbf{r} d r d \theta
$$

Averages

Problem: Find the average of $80+2 x-\left(x^{2}+y^{2}\right)$ /20 on the pizza.

Answer: $80+0+$ this integral:

$$
\begin{gathered}
\frac{1}{\pi 20^{2}} \int_{\Omega}\left(-\frac{x^{2}+y^{2}}{20}\right) d x d y=-\frac{1}{\pi 20^{3}} \int_{0}^{2 \pi} \int_{0}^{20} r^{2} \mathbf{r} d r d \theta \\
=-\frac{1}{\pi 20^{3}} \int_{0}^{2 \pi} \frac{20^{4}}{4} d \theta=-10
\end{gathered}
$$

The average temperature is 70 C .

Differential equations - another reason for double integrals

Differential equations - another reason for double integrals

Given

$$
u^{\prime \prime}(x)=u(x), \quad u(0)=1, u^{\prime}(0)=-1
$$

we can attempt a solution by integrating:

$$
u^{\prime}(x)=u^{\prime}(0)+\int_{0}^{x} u^{\prime \prime}(t) d t=-1+\int_{0}^{x} u(t) d t .
$$

and a second time:

$$
u(x)=u(0)+\int_{0}^{x} u^{\prime}(s) d s=1-x+\int_{0}^{x} \int_{0}^{s} u(t) d t d s
$$

So... $0 \leq t \leq s \leq x$.

 What happens if we do s first and then t ?Ans:

s is between t and x.

Differential equations - or do you prefer integral equations?

$$
u^{\prime \prime}(x)=u(x), \quad u(0)=1, u^{\prime}(0)=-1,
$$

If you don't like the differential equation, you can use an integral equation:

$$
u(x)=1-x+\int_{0}^{x} u(t)(x-t) d t
$$

- and there's only one integral!

The End

