A fine balance

Copyright 2008 by Evans M. Harrell II.

About the tests....

Has been graded and reviewed.
 Median 73.

- More than usual typos. Sorry!
 - 1. We adjusted points on one problem and checked for systematic differences between the versions before averaging.
 - 2. Next time the teaching team will prepare solutions farther in advance.

Lowest points on polar integral

5. (A clone of 17.4 #9) Calculate

$$\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} \sqrt{4x^2 + 4y^2} dx dy =$$

d

d

6. Let $I := \int_{\Omega} \int (x + 2y - 3) dx dy$, where Ω is the region bounded by $y = 2x^2$ and y = 2.

a) Write I as an iterated integral where x is integrated first:

b) Write I as an iterated integral where y is integrated first:

c) Evaluate $I = _$

Low points on limit switchero

$$\int_{a} \int_{a} \int$$

Speaking of tests....

The final exam is scheduled for Period
5, Tuesday, 9 December, 11:30-2:20.

Potential conflict with Physics 2212
 Potential conflict with CS 1371 (Section E)

I have been in contact with Prof. Murray about the conflict with Physics 2212. Write him by 10 Nov. Write me about other conflicts ASAP!

Center of mass and centroid

What is the point at which a "plate" - a 2-D region - will balance?

Ans: The average position.

Case 1. The density is constant. Then the balancing point is also called the *centroid*.

Center of mass and centroid

Case 1. The density is constant. Then the balancing point is also called the *centroid*.

$$\mathbf{r}_M = \frac{\int \int_\Omega \mathbf{r} dx dy}{Area}$$

That is,
$$x_M = \frac{\int \int_{\Omega} x dx dy}{\int \int_{\Omega} dx dy}$$

$$y_M = \frac{\int \int_{\Omega} y dx dy}{\int \int_{\Omega} dx dy}$$

Center of mass and centroid

Case 2. Variable density.

Or,

$$\mathbf{r}_M = \frac{\int \int_{\Omega} \mathbf{r} \lambda(x, y) dx dy}{Mass}$$

$$x_M = \frac{\int \int_{\Omega} x\lambda(x,y) dx dy}{\int \int_{\Omega} \lambda(x,y) dx dy},$$

$$y_M = rac{\int \int_{\Omega} y\lambda(x,y) dx dy}{\int \int_{\Omega} \lambda(x,y) dx dy}.$$

Volume and mass if the height function
 f(x,y) is not so simple.

Even if the French fries are not so convenient, you can still dice the veggie.

• Volume: $\int dx dy dz$

+ Mass or other integrals: $\int \lambda(x,y,z) dx dy dz$

+ Average: (1/Vol(Ω)) • $\int \lambda (x,y,z) dx dy dz$

Examples:
Cone y² = x² + z² Volume? Centroid?

★ Wedge 0 ≤ x,y,z, x + 2 y + 3 z ≤ 3

Integral of sin x sin y sin z with Ω bounded by z = y, z = 0, x = 0, x = π/2, y = π.
Integral of y² x² z with 0 ≤ z ≤ x² - y², 0 ≤ x ≤ 1.

+ Examples:

+ Cone $y^2 = x^2 + z^2$ Volume? Centroid?

____d_______d______

Volume of the cone Ofgez, X2+22 ey2 Vol = 5 2 5 4 1 1 dedxdy = 5 2 5 2 Jy= Red dy -Vyzzz -4 $= \int_{0}^{2} \pi y^{2} dy = \frac{8\pi}{3}$ Centroid: Ym= 3 5 5 5 5 5 5 y . Ty2 dy dz dxdy= 3 5 y . Ty2 dy = 324 = 3 if of the way from the faterd to the top