

Vectors in motion

Copyright 2008 by Evans M. Harrell II.

- Uncle Si -John Saylor Coon, 1854-1938, Founder of GT School of Mechanical Engineering,

"Engineering is common sense first, and mathematics next."

Any business to take care of?

dateWed, Aug 20, 2008 at 2:26 PMsubjectRe: Math 2401 - homework question

- Dr. Harrell,
- Greetings! Thank you for all of the informative emails. I have a question in
- regards to the homework: are we to submit it during lectures on MW or during the
- recitation on T/Th? Thank you for your time. I look forward to hearing from you.
- Best regards,

ANSWER: Please submit your homework to the TA at recitation.

-4 sint 4 rost 4 Costi sintty -

Why on earth would you differentiate a

dot product

+ cross product ?

Examples

How fast is the angle between two vectors changing?
cos θ(t) = v(t)•w(t)
(You'll need product and chain rule.)
How fast is the angular momentum changing? L = r × p.

Why on earth would you integrate a vector function?

Examples

Given velocity v(t) find position x(t).
Power = F • v .

Work is the integral of this. If, say, v is fixed, you can integrate F and then dot it with v.

The rules of vector calculus look just like the rules of scalar calculus

The rules of vector calculus look just like the rules of scalar calculus
 Integrals and derivs of α f(t), f(t)+g(t), etc.

The rules of vector calculus look just like the rules of scalar calculus

Integrals and derives of α f(t), f(t)+g(t), etc.

 Also - because of this - you can always calculate component by component. Calculus is built on the idea of a limit. What does a limit mean for vector functions?

The limit

 $\lim_{t \to t_0} \mathbf{f}(t) = \mathbf{L}$

means

 $\lim_{t \to t_0} \|\mathbf{f}(t) - \mathbf{L}\| = 0$

Calculus is built on the idea of a limit. What does a limit mean for vector functions?

The limit

 $\lim_{t \to t_0} \mathbf{f}(t) = \mathbf{L}$

means

Some kind of scalar that depends on t

 $\lim_{t \to t_0} \|\mathbf{f}(t) - \mathbf{\hat{L}}\| = 0$

One of the great tricks of vector calculus:

If you can rewrite a vector problem in some way as a scalar problem, it becomes "kindergarten math." Calculus is built on the idea of a limit. What does a limit mean for vector functions?

The limit

 $\lim_{t \to t_0} \mathbf{f}(t) = \mathbf{L}$

means

 $\lim_{t \to t_0} \|\mathbf{f}(t) - \mathbf{L}\| = 0$

$\|\mathbf{f}(t) - \mathbf{L}\|^2 = (f_1 - L_1)^2 + (f_2 - L_2)^2 + (f_3 - L_3)^2$

◆ So if the left side \rightarrow 0, each and every one of the contributions on the right \rightarrow 0 as well. And conversely.

You can do calculus in terms of vectors or components. You choose.

You can think in terms of vectors or components.

A mystical picture:

Limits du dors Fetz Flt.) YE>0] { >0 st." 1 f /t-to <8 Then Ifled-L/CE

The derivative $\frac{d \vec{v}(t)}{dt} = \lim_{h \to 0} \frac{\vec{v}(t+h) - \vec{v}(t)}{h}$ $= \widehat{\left(\lim_{h \to 0} \frac{V_1(6th) - V_1(t)}{h} \right)} + \widehat{\left(\lim_{h \to 0} \frac{V_2(6th) - V_2(t)}{h} \right)}$ etc.

The derivative d V(t) = lim hat kind of animal. A: Vec. $= \hat{I} \left(\lim_{h \to 0} \frac{V_1(6th) - V_1(t)}{h} \right) + \hat{J} \left(\lim_{h \to 0} \frac{V_2(6th) - V_2(t)}{h} \right)$ etc.

 $f_{i}\bar{g} = f_{i}g_{i} + f_{z}g_{z}$ $(t \cdot \bar{q}) = f_1 g_1 + f_2 g_2$ + t, 9 + tz 9 f) . q + + 19

You can think in terms of vectors or components.

You choose.

+ Some limit examples + spiral x(t) = t cos t, y(t) = t sin t

+parabola $x(t) = t^2$, y(t) = -t

The rules of vector calculus look just like the rules of scalar calculus
product rule(s)

(u(t) f(t))' = u'(t) f(t) + u(t) f'(t)
(f(t)•g(t))' = f'(t)•g(t) + f(t)•g'(t)
(f(t)×g(t))' = f'(t)×g(t) + f(t)×g'(t)

The rules of vector calculus look just like the rules of scalar calculus

+ chain rule

+ (f(u(t)))' = u'(t) f'(u(t))

Example: If u(t) = t² and f(x) = sin(x)i - 2 x j, then f(u(t)) = sin(t²)i - 2 t² j, and its derivative:

+ 2 t $\cos(t^2)i - 4 t j$ is equal to

+2 t $(\cos(x)i - 2j)$ when we substitute $x = t^2$.

 2 ways to calculate: substitute and then differentiate, or chain rule

 The rules of vector calculus look just like the rules of scalar calculus

+ chain rule

sinft)1-227

+ (f(u(t)))' = u'(t) f'(u(t))

+ Example: If u(t) = t² and f(x) = sin(x)i - 2 x j, then f(u(t)) = sin(t²)i - 2 t² j, and its derivative:

+ $2 t \cos(t^2)i - 4 t j$ is equal to

+2 t $(\cos(x)i - 2j)$ when we substitute $x = t^2$.

Some tricky stuff

Cross products. $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$. (In fact) What's right is right and what's left is left. Same for calculus.

Some tricky stuff

Suppose that the length of a vector $\mathbf{r}(t)$ is fixed. Then \mathbf{r} (t) is always perpendicular to $\mathbf{r}'(t)$.

And vice versa.

) uppose $\left| \overline{F}(t) \right| = 16$ What can I tell about velocity? = 21. dr $\vec{V} = \frac{d}{dt}\vec{r}$ r'.V = 0 $|\vec{r}|^2 = 256$ "r.r.

What about integrals of vectors? (Find position from velocity.)

How does it work?

Is there a +C? What kind of an animal is the +C?

The bottom line

Don't worry about the basic rules of calculus for vector functions. They are pretty much like the ones you know and love.

Some great curves and how to write them as parametrized curves

circles and ellipses
spirals
helix
Lissajous figures

Some Nice Curves

- Graphics -

 $\mathbf{Spiral}[t_] := \{t \operatorname{Cos}[t], t \operatorname{Sin}[t]\}$

 ${\tt Spiral3D[t_] := \{t \, Cos[t], \, t \, Sin[t], \, 0\}}$

ParametricPlot[Spiral[t], {t, 0, 10}]

What is we change the parameter t -> Sinh[s], for instance?

ParametricPlot[Spiral[Sinh[s]], {s, 0, 2}]

 $ParametricPlot3D[Spiral3D[t], (t, 0, 30), ViewPoint \rightarrow (5, 0, 4)]$

ParametricPlot[Spiral[Sinh[s]], (s, 0, 2)]

- Graphics -

Helix[t_] := {Cos[4Pit], Sin[4Pit], t}

ParametricPlot3D[Helix[t], (t, 0, 5), PlotPoints + 360]

- Graphics3D -

 $Solenoid[t_{-}, r_{-}, R_{-}, w_{-}] := \{(R + r \cos[w t]) \cos[t], (R + r \cos[w t]) \sin[t], R + r \sin[w t]\}$

ParametricPlot3D[Solenoid[t, 1, 2, 20], {t, 0, 10}, PlotPoints + 360]

