Bewitching triple integrals!

Why did the CS major confuse Halloween and Christmas?

Why did the CS major confuse Halloween and Christmas?

Because Oct $31=$ Dec 25 !

Why did the CS major confuse Halloween and Christmas?

Because Oct $31=$ Dec 25 !
(Hint: There are 10 kinds of people in the world, those who understand binary and those who don't. And the same for octal.)

Speaking of tests....

+ The final exam is scheduled for Period 5, Tuesday, 9 December, 11:30-2:20.
+Potential conflict with Physics 2212
+ Potential conflict with CS 1371 (Section E)
I have been in contact with Profs. Murray/ Greco about the conflict with Physics 2212. Write them by 10 Nov.
Write me about other conflicts ASAP!

Triple integrals

+ Volume: $\int d x d y d z$
+ Mass or other integrals:
$\int \lambda(x, y, z) d x d y d z$
+ Average:
$(1 / \operatorname{Vol}(\Omega)) \cdot \int \lambda(x, y, z) d x d y d z$

Triple integrals

+ Integrals over boxes. Example. What is the total mass of a brick, $0 \leq x \leq 8,0 \leq y \leq 4,0 \leq z \leq 3$,
+ When the density is $10+\mathrm{z} \cos (\pi \mathrm{x})$?
+ When the density is $y z^{2} e^{x y z}$?
+ Brick, $0 \leq x \leq 8,0 \leq y \leq 4,0 \leq z \leq 3$,
+ When the density is $10+\mathrm{z} \cos (\pi \mathrm{x})$?

\qquad
\qquad

$$
\begin{gathered}
960+\int_{0}^{8} \cos \pi x d x \int_{0}^{3} z d z \int_{0}^{4} 1 d y \\
=960 \text { wi no wo! }
\end{gathered}
$$

+ Brick, $0 \leq x \leq 8,0 \leq y \leq 4,0 \leq z \leq 3$,
+ When the density is $y z^{2} e^{x y z}$?

$$
\begin{aligned}
& \left.\int_{0}^{3} \int_{0}^{4} \int_{0}^{8} \int_{0}^{8} e^{x y z} d x\right) d y d z \\
& \int_{0}^{3} \int_{0}^{4}\left(\left.y z^{2} \frac{1}{4 z} e^{x y z}\right|_{0} ^{8}\right) d y d z \int_{0}^{3} z\left(\frac{x}{8 z}\left(\frac{3 z}{}-1\right)-4\right) d z \\
& =\int_{0}^{3} z\left(\int_{0}^{4}\left(e^{0 y z}-e^{0}\right) d y\right) d z^{1 / 0}
\end{aligned}
$$

Volume of the cone $0 \leq y \leq 2, x^{2}+z^{2} \leq y^{2}$

$$
\begin{aligned}
V o l & =\int_{0}^{2} \int_{-y}^{y} \int_{-\sqrt{y^{2}-x^{2}}}^{+\sqrt{y^{2}-x^{2}}} 1 \\
& =\int_{0}^{2} \pi y^{2} d y=\frac{8 \pi}{3}
\end{aligned}
$$

Centroid:

$$
y_{m}=\frac{3}{8 \pi} \int_{0}^{2} \int_{-y}^{y} \int_{-\sqrt{y^{2}-x^{2}}}^{\sqrt{y^{2}-x^{2}}} y d z d x d y=\frac{3}{8 \pi} \int_{0}^{2} y \cdot \pi y^{2} d y
$$

$$
=\frac{3}{32} 2^{4}=\frac{3}{2}
$$

($\frac{1}{4} \cdot /$
way from the fat end to the typ.

Triple integrals

+ Examples:
+ Cone $y^{2}=x^{2}+z^{2}$ Volume? Centroid?
+ Wedge $0 \leq x, y, z, \quad x+2 y+3 z \leq 3$.
+ Integral of $\sin \mathrm{x} \sin \mathrm{y} \sin \mathrm{z}$ with Ω bounded by

$$
z=y, z=0, x=0, x=\pi / 2, y=\pi
$$

+ Integral of $y^{2} x^{2} z$ with $0 \leq z \leq x^{2}-y^{2}, 0 \leq x \leq 1$.
+ Volume of wedge $0 \leq x, y, z, \quad x+2 y+3 z \leq 3$.

$$
\begin{aligned}
& 2 \text { no } \\
& 3-3 z \\
& \frac{1}{2}(3-x-3 z) d x \\
& =\frac{3}{4} \text { ? } \\
& \left.=\frac{1}{2}(3-3 z) \cdot 3-3 z\right)-\frac{1}{2} \int_{0}^{3-3 z} 8 d x \\
& =\frac{1}{2}(3-3 z)^{2}-\frac{1}{4}(3-3 z)^{2} \\
& =\frac{1}{4}\left(3-3 t t^{2}=\frac{9}{4}\left(1-t^{2}\right.\right.
\end{aligned}
$$

Triple integrals

+ Example:

+ Integral of $\sin x \sin y \sin z$ with Ω bounded by

$$
z=y, z=0, x=0, x=\pi / 2, y=\pi
$$

Triple integrals

+ Example:

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{z}^{\pi} \int_{\text {船 }}^{2} \\
& =\int_{0}^{\pi} \sin z(1+\cos z) \xi d z
\end{aligned}
$$

Another fun game

+ Limits of integration. What is the region of integration in

$$
\int_{0}^{4} \int_{0}^{4-x} \int_{0}^{4-x-y}
$$

+ How does it look if we integrate in a different order?

The switcheroo is back!

$$
\begin{gathered}
z \leq 4-x-0 \sqrt{y \leq 4-x-z)} \sqrt{0 \leq y \leq 4 x t} \\
\int_{0}^{1} \int_{0}^{4} \int_{0}^{4-x} \int_{0}^{4-x-z} \sqrt{0} \frac{d y}{\xi} d z d x
\end{gathered}
$$

Another fun game

+ Limits of integration. What is the region of integration in
$\int_{0}^{4} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}}$
+ How does it look if we integrate in a different order?

Coordinate systems for grown-ups

+ Cylindrical = polar plus z
+Spherical = geographic coordinates plus radius


```
In[3]:= ParametricPlot3D[{(2 + Cos[t]) Cos[s], (2 + Cos[t]) Sin[s], Sin[t]}, \(\{s, 0, \mathrm{Pi} / 2\},\{t, 0,2 \mathrm{Pi}\}]\)
```


$\left[\begin{array}{l}r_{0} \\ \phi \\ z\end{array}\right]=\left[\begin{array}{c}2+\cos u \\ t \\ \sin u\end{array}\right], t=0 \ldots \frac{\pi}{2}, u=0 \ldots 2 \pi$

Coordinate systems for grown-ups

+ Cylindrical = polar plus z

$$
\begin{aligned}
& +r=\text { distance from vertical axis } \\
& +\theta=\text { angle } \\
& +z=\text { height }
\end{aligned}
$$

Coordinate systems for grown-ups

+ Cylindrical to Cartesian:

$$
\begin{aligned}
& +x=r \cos \theta \\
& +y=r \sin \theta \\
& +z=z
\end{aligned}
$$

How big is $\triangle V$?

in horsomplame $d A=r d r d \theta$
hegut $=d z$
$d r=r d e d \theta d=$

Cylindrical examples

+ Volume of sphere
+ Volume of $1 / 4$ torus (doughnut)
+ Integral of $z\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$, where
$+x, y>0$ and
+z is between $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}$ and $\left(1-x^{2}-\mathrm{y}^{2}\right)^{1 / 2}$
+ What does this region look like?

Cylindrical examples

+ Volume of sphere
+ Volume of $1 / 4$ torus (doughnut)
+ Integral of $z\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$, where
$+x, y>0$ and
+z is between $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}$ and $\left(1-x^{2}-\mathrm{y}^{2}\right)^{1 / 2}$
+ What does this region look like?

Cylindrical examples

Cylenchucal volume.

$$
\begin{aligned}
& r \leq z \leq \sqrt{1-r^{2}} \\
& 0 \leq \theta \leq \frac{\pi}{2} \\
& 0 \leq r \leq \frac{1}{\sqrt{2}} \\
& V=\int_{0}^{\frac{1}{\sqrt{2}}} \int_{r}^{\sqrt{1-r^{2}}} \int_{0}^{\frac{\pi}{2}} d \theta d z r d r \\
& =\frac{\pi}{2} \int_{0}^{\frac{1}{\sqrt{2}}}\left(\left(1-r^{2}\right)^{\frac{1}{2}} d r-r^{2} d r\right)
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{\pi}{2}\left(-\frac{1}{3}\left(1-r^{2}\right)^{\frac{3}{2}}-\left.\frac{1}{3} r^{3}\right|_{0} ^{\frac{1}{\sqrt{2}}}\right) \\
& =\frac{\pi}{6}\left(1-\frac{1}{2^{3 / 2}}-\frac{1}{2^{3 / 2}}\right)=\frac{\pi}{6}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Coordinate systems for grown-ups

+Spherical = geographic plus ρ
$+\rho=$ distance from origin
$+\theta=$ polar angle in $x y$ plane $=$ longitude
$+\phi=$ angle from pole, "colatitude"

The End

