Bewitching triple integrals!

Copyright 2008 by Evans M. Harrell II.

Why did the CS major confuse Halloween and Christmas?

Why did the CS major confuse Halloween and Christmas?

Because Oct 31 = Dec 25 !

Why did the CS major confuse Halloween and Christmas?

Because Oct 31 = Dec 25 !

(Hint: There are 10 kinds of people in the world, those who understand binary and those who don't. And the same for octal.)

Speaking of tests....

The final exam is scheduled for Period
5, Tuesday, 9 December, 11:30-2:20.

Potential conflict with Physics 2212
Potential conflict with CS 1371 (Section E)

I have been in contact with Profs. Murray/ Greco about the conflict with Physics 2212. Write them by 10 Nov. **Write me about other conflicts ASAP!**

• Volume: $\int dx dy dz$

+ Mass or other integrals: $\int \lambda(x,y,z) dx dy dz$

Average:
 (1/Vol(Ω)) • ∫λ(x,y,z)dx dy dz

Integrals over boxes. Example. What is the total mass of a brick, 0≤x≤8,0 ≤y≤4,0≤z≤3,
 When the density is 10 + z cos(πx)?

+ When the density is $y z^2 e^{xyz}$?

+ Brick, 0≤x≤8,0 ≤y≤4,0≤z≤3,
 + When the density is 10 + z cos(πx)?

COSTIX dx JZdZ JId - 960 with no work!

Volume of the cone Ofgez, X2+22 ey2 Vol = 5 2 5 4 1 dedxdy = 5 2 5 4 dy -VyZZZ -4 $= \int_{0}^{2} \pi y^{2} dy = \frac{8\pi}{3}$ Centroid: Ym= 37 5 5 5 5 5 y Vy=x2 Ym= 37 5 5 5 5 5 5 y Ty2 dy = 3 24 = 3 (+ o) the way from the fatered to the typ

Examples:
Cone y² = x² + z² Volume? Centroid?

→ Wedge $0 \le x, y, z, x + 2y + 3z \le 3$.

Integral of sin x sin y sin z with Ω bounded by z = y, z = 0, x = 0, x = π/2, y = π.
Integral of y² x² z with 0 ≤ z ≤ x² - y², 0 ≤ x ≤ 1.

IN. 1-2)2 dz X 2 (7) 3 4 32 - 1/2 + (3 2 $\frac{1}{7}(3-32)^2 - \frac{1}{4}(3-32)^2$ = + (3-32)= + (1-

Example:

+ Integral of sin x sin y sin z with Ω bounded by $z = y, z = 0, x = 0, x = \pi/2, y = \pi$.

Another fun game

Limits of integration. What is the region of integration in

 $\int_{0}^{4} \int_{0}^{4-x} \int_{0}^{4-x-y} \dots d \dots d \dots d$

How does it look if we integrate in a different order?
The switcheroo

254-X-0 454-X-24 05254-X-4 $\int_{0}^{4} \int_{0}^{4-x} \int_{0}^{4-x-\frac{2}{y}} \int_{0}^{4-x-\frac{2}{y}}$ 4 4-7-2 7

Another fun game

_____d_______d______d_

Limits of integration. What is the region of integration in

$$\int_{0}^{4} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \dots$$

How does it look if we integrate in a different order?

Cylindrical = polar plus z

 Spherical = geographic coordinates plus radius

$$\begin{bmatrix} r_0 \\ \phi \\ z \end{bmatrix} = \begin{bmatrix} 2 + \cos u \\ t \\ \sin u \end{bmatrix}, t = 0 \dots \frac{\pi}{2}, u = 0 \dots 2\pi$$

Cylindrical = polar plus z
 r = distance from vertical axis
 θ = angle
 z = height

Cylindrical to Cartesian: +x = r cos θ +y = r sin θ +z = z

How begis AV ? Ar In horsonholme dA = rdrdd height = dzdie roladedz

Cylindrical examples

Volume of sphere
Volume of 1/4 torus (doughnut)
Integral of z (x² + y² + z²)^{1/2}, where
+x,y > 0 and
+z is between (x² + y²)^{1/2} and(1-x²-y²)^{1/2}
What does this region look like?

Cylindrical examples

Volume of sphere
Volume of 1/4 torus (doughnut)
Integral of z (x² + y² + z²)^{1/2}, where
+x,y > 0 and
+z is between (x² + y²)^{1/2} and(1-x²-y²)^{1/2}
What does this region look like?

Cylindrical examples ZEVI-R Cylendrical volume. r = Z = VI-rz OLOLTZ OLYL - $= \frac{\pi}{2} \int \sqrt{r} \left((1 - r^2) \frac{1}{r} dr - r^2 dr \right)$

 $V = \frac{1}{2} \left(-\frac{1}{3} (1 - r^2)^2 - \frac{1}{3} r^3 \right)$ $= \frac{\pi}{6} \left(1 - \frac{1}{2^{3/2}} - \frac{1}{2^{3/2}} \right) = \left[\frac{\pi}{6} \left(1 - \frac{1}{\sqrt{2}} \right) \right]$

Spherical = geographic plus ρ
+ρ = distance from origin
+θ = polar angle in xy plane = longitude
+φ = angle from pole, "colatitude"

