Coordinates all around

Coordinate systems for grown-ups

+ Cylindrical = polar plus z
+Spherical = geographic coordinates plus radius

Coordinate systems for grown-ups

+ Cylindrical = polar plus z $+r=$ distance from vertical axis, $0 \leq r$ $+\theta=$ angle, any range of length 2π $+z=$ height, $-\infty<z<\infty$

Coordinate systems for grown-ups

+ Cylindrical to Cartesian:

$$
\begin{aligned}
& +x=r \cos \theta \\
& +y=r \sin \theta \\
& +z=z
\end{aligned}
$$

Coordinate systems for grown-ups

+ Cartesian to Cylindrical :

$$
\begin{aligned}
& +r=\left(x^{2}+y^{2}\right)^{1 / 2} \\
& +\theta=\arctan (y / x) \\
& +z=z
\end{aligned}
$$

Cylindrical examples

Cylenchucal volume.

$$
\begin{aligned}
& r \leq z \leq \sqrt{1-r^{2}} \\
& 0 \leq \theta \leq \frac{\pi}{2} \\
& 0 \leq r \leq \frac{1}{\sqrt{2}} \\
& V=\int_{0}^{\frac{1}{\sqrt{2}}} \int_{r}^{\sqrt{1-r^{2}}} \int_{0}^{\frac{\pi}{2}} d \theta d z r d r \\
& =\frac{\pi}{2} \int_{0}^{\frac{1}{\sqrt{2}}}\left(\left(1-r^{2}\right)^{\frac{1}{2}} d r-r^{2} d r\right)
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{\pi}{2}\left(-\frac{1}{3}\left(1-r^{2}\right)^{\frac{3}{2}}-\left.\frac{1}{3} r^{3}\right|_{0} ^{\frac{1}{\sqrt{2}}}\right) \\
& =\frac{\pi}{6}\left(1-\frac{1}{2^{3 / 2}}-\frac{1}{2^{3 / 2}}\right)=\frac{\pi}{6}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Cylindrical examples

+ Volume of $1 / 4$ torus (doughnut)


```
    {s, 0, Pi/2}, {t, 0, 2Pi}]
```


Cylindrical examples

+ Volume of $1 / 4$ torus (doughnut)

$$
\begin{aligned}
& =\frac{\pi}{2} \int_{-1}^{1} \frac{1}{2} r^{2+\sqrt{z^{2}}} \int_{2-\sqrt{z}}^{2} d z \\
& =\frac{\pi}{4} \int_{-1}^{1}\left(4+4 \sqrt{1-z^{2}}+\left(1-x^{2}\right)-\left(y-4 \sqrt{-z^{2}}+\left(1-z^{2}\right) d z\right.\right.
\end{aligned}
$$

Coordinate systems for grown-ups

+Spherical = geographic plus ρ
$+\rho=$ distance from origin
$+\theta=$ polar angle in $x y$ plane $=$ longitude
$+\phi=$ angle from pole, "colatitude"

Coordinate systems for grown-ups

+ Cartesian to spherical:
$+\rho=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$
$+\tan \theta=y / x ;$
+ or $\cot \theta=x / y ;$
+ or $\cos \theta=x /\left(x^{2}+y^{2}\right)^{1 / 2}$
$+\cos \phi=z /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$

Coordinate systems for grown-ups

+ Spherical to cylindrical:

$$
\begin{aligned}
& +r=\rho \sin \phi \\
& +\theta=\theta \\
& +z=\rho \cos \phi
\end{aligned}
$$

Coordinate systems for grown-ups

+ Spherical to Cartesian:

$$
\begin{aligned}
& +x=\rho \sin \phi \cos \theta \\
& +y=\rho \sin \phi \sin \theta \\
& +z=\rho \cos \phi
\end{aligned}
$$

Nice application

+How far is it by the shortest air route from Atlanta to Moscow?

+ Atlanta
+ latitude=33.640200544698
+ longitude $=-84.418068587706^{\circ}$
+ Moscow
+ latitude=55.57751294796784 ${ }^{\circ}$
+Longitude=37.76779917676628 ${ }^{\circ}$

Nice application

+How far is it by the shortest air route from Atlanta to Moscow?
Note: $\rho=6378 \mathrm{~km}$
+Atlanta
$+\phi=$ colatitude $=.98366$ radians
$+\sin \phi=.8325, \cos \phi=.5540$
$+\theta=$ longitude $=-1.4734$ radians
$+\sin \theta=-.9953, \cos \theta=.0973$

Nice application

+ How far is it by the shortest air route from Atlanta to Moscow?
Note: $\rho=6378 \mathrm{~km}$
+ Moscow

$$
\begin{aligned}
+\phi & =\text { colatitude }=.60079 \text { radians } \\
& +\sin \phi=.5653, \cos \phi=.8249 \\
+\theta & =\text { longitude }=.65917 \text { radians } \\
& +\sin \theta=.6125, \cos \theta=.7905
\end{aligned}
$$

Nice application

+ How far is it by the shortest air route from Atlanta to Moscow? Note: $\rho=6378 \mathrm{~km}$
+Atlanta

$$
\begin{aligned}
& +x=\rho(.8325)(.0973)=.0810 \\
& +y=\rho(.8325)(-.9953)=-.8286 \\
& +z=\rho(.5540)
\end{aligned}
$$

Nice application

+ How far is it by the shortest air route from Atlanta to Moscow?
Note: $\rho=6378 \mathrm{~km}$
+ Moscow

$$
\begin{aligned}
&+x=\rho(.5653)(.7905)=.4469 \\
&+y=\rho(.5653)(.6125)=.3462 \\
&+z=\rho(.8249) \\
& \operatorname{Cos}(\alpha)=.4469^{*} .0810+.3462^{*}(-.8286)+.8249^{*} .5540 \\
& \quad \alpha=1.36297, \text { dist }=6378 \alpha=8693 \mathrm{~km} .
\end{aligned}
$$

Cylindrical examples

+ Volume of $1 / 4$ cone with cap
+Volume of sphere
+Volume of a sliced sphere
spherical volume

$$
0 \leq \theta \leq \frac{\pi}{2}
$$$\leq \varphi \leq \pi / 4$

no mixed
$0 \leq \rho \leq 1$ limits!

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{1} \rho^{2} d \rho \sin \varphi d \varphi d \theta \\
= & \frac{1}{3}\left[-\cos \left(\frac{\pi}{4}\right)+1\right] \cdot \frac{\pi}{2}=\frac{\pi}{6}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Prof. H's special spherical tips

\pm Remember, θ runs from 0 to 2π, but ϕ runs only from 0 to π.

+ Total "steradians" on the sphere $=4 \pi=$ the complete integral of $\sin \phi d \phi d \theta$
+ Very often you want to use the variable $\mathrm{w}=\cos \phi$, instead of ϕ. This variable runs from -1 to 1 and the volume element $d V=\rho^{2} d \rho d w d \theta$. $d w=-\sin \phi d \phi$

Another one of the great integrals

+ How can we design a spaceship that travels according to plan in the solar system, responding to gravitational forces from every particle in the universe, when we don't know the mass density λ inside the sun or the planets? All we know is that λ depends only on ρ, not θ or ϕ.

Another one of the great integrals

+ Show that a spaceship can treat celestial bodies as if they are concentrated at a point. Until it crashes into the surface.

Another one of the great integrals

Another one of the great integrals

+ Newton's theorem: If the mass density depends only on ρ, and becomes 0 above a certain value of ρ, then the gravitational potential outside the planet is the same as if all mass is concentrated at the origin, or ...

Another one of the great integrals

$$
\begin{gathered}
\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\lambda(\rho)}{|\mathbf{a}-\mathbf{r}|} \rho^{2} \sin (\phi) d \theta d \phi d \rho=\frac{M}{|\mathbf{a}|} \\
M:=\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \lambda(\rho) \rho^{2} \sin (\phi) d \theta d \phi d \rho
\end{gathered}
$$

Tune in Wednesday for the exciting
dénouement of $\mathfrak{N e w t o n ' s}$
integral!!

