Coordinates all around

Copyright 2008 by Evans M. Harrell II.

Cylindrical = polar plus z

Spherical = geographic coordinates plus radius

Cylindrical = polar plus z
 r = distance from vertical axis, 0≤r
 ⊕ = angle, any range of length 2π
 z = height, -∞ < z < ∞

Cylindrical to Cartesian: +x = r cos θ +y = r sin θ +z = z

Cartesian to Cylindrical :
r = (x² + y²)^{1/2}
θ = arctan(y/x)
z = z

Cylindrical examples ZEVI-R Cylenchical volume. r 4 Z 4 VI-r2 OLOLIZ OLILIZ $V = \int_{0}^{\frac{1}{\sqrt{2}}} \int_{0}^{\sqrt{1-r^{2}}} \int_{0}^{\frac{\pi}{2}} d\theta dz r dr$ $= \frac{\pi}{2} \int \sqrt{r} \left((1 - r^2) \frac{1}{r} dr - r^2 dr \right)$

 $V = \pm \left(-\frac{1}{3} (1 - r^2)^2 - \frac{1}{3} r^3 \right)$ $=\frac{\pi}{6}\left(1-\frac{1}{2^{3/2}}-\frac{1}{2^{3/2}}\right)=\frac{\pi}{6}\left(1-\frac{1}{\sqrt{2}}\right)$

Cylindrical examples

Volume of 1/4 torus (doughnut)

Cylindrical examples

Volume of 1/4 torus (doughnut)

7-16-2 dz $= \frac{11}{4} \left(\frac{4}{4} + \frac{1}{4} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \frac{1}{4} + \frac{1}{2} +$ - 87 [-, 702 do rot de OSOS T/2

Spherical = geographic plus ρ
+ρ = distance from origin
+θ = polar angle in xy plane = longitude
+φ = angle from pole, "colatitude"

• Cartesian to spherical: • $\rho = (x^2 + y^2 + z^2)^{1/2}$ • $\tan \theta = y/x;$ • $\operatorname{or} \cot \theta = x/y;$ • $\operatorname{or} \cos \theta = x/(x^2 + y^2)^{1/2}$ • $\cos \phi = z/(x^2 + y^2 + z^2)^{1/2}$

Spherical to cylindrical:
+r = ρ sin φ
+θ = θ
+z = ρ cos φ

Spherical to Cartesian:
+x = ρ sin φ cos θ
+y = ρ sin φ sin θ
+z = ρ cos φ

How far is it by the shortest air route from Atlanta to Moscow?
Atlanta

latitude=33.640200544698
longitude= -84.418068587706

Moscow

latitude=55.57751294796784
Longitude=37.76779917676628

How far is it by the shortest air route from Atlanta to Moscow?
Note: ρ = 6378 km
Atlanta
+φ = colatitude= .98366 radians
+ sin φ = .8325, cos φ = .5540
+θ = longitude= -1.4734 radians
+ sin θ = -.9953, cos θ = .0973

How far is it by the shortest air route from Atlanta to Moscow?
Note: ρ = 6378 km
Moscow
+φ = colatitude= .60079 radians
+ sin φ = .5653, cos φ = .8249
+θ = longitude= .65917 radians
+ sin θ = .6125, cos θ = .7905

How far is it by the shortest air route from Atlanta to Moscow?
Note: ρ = 6378 km
Atlanta
+x = ρ (.8325)(.0973) = .0810
+y = ρ (.8325)(-.9953) = -.8286

+z = ρ (.5540)

How far is it by the shortest air route from Atlanta to Moscow?
Note: ρ = 6378 km
Moscow
+x = ρ (.5653)(.7905) = .4469
+y = ρ (.5653)(.6125) = .3462
+z = ρ (.8249)
Cos(α) = .4469*.0810 + .3462*(-.8286) + .8249*.5540
α = 1.36297, dist = 6378 α = 8693 km.

2 Ado N-S edge.

Cylindrical examples

Volume of ¼ cone with cap

Volume of sphere

Volume of a sliced sphere

spherical volume OLGLE $0 \le \varphi \le \overline{1}/4$ no mixed $0 \le g \le 1$ limits! $\int_{0}^{\pi/2} \int_{0}^{\pi/4} \int_{0}^{1} g^{2} dg sing dq d\theta$ = $\frac{1}{3} \left[-cs(\Xi) + 1 \right] \cdot \Xi = \frac{1}{6} \left(1 - \frac{1}{52} \right)$

Prof. H's special spherical tips

• Remember, θ runs from 0 to 2 π, but ϕ runs only from 0 to π.

- + Total "steradians" on the sphere = 4π = the complete integral of sin ϕ d ϕ d θ
- Very often you want to use the variable w = cosφ, instead of φ. This variable runs from -1 to 1 and the volume element dV = ρ² dρ dw dθ.

 $dw = -\sin\phi d\phi$

+ How can we design a spaceship that travels according to plan in the solar system, responding to gravitational forces from every particle in the universe, when we don't know the mass density λ inside the sun or the planets? All we know is that λ depends only on ρ , not θ or ϕ .

Show that a spaceship can treat celestial bodies as if they are concentrated at a point. Until it crashes into the surface.

Newton's theorem: If the mass density depends only on ρ, and becomes 0 above a certain value of ρ, then the gravitational potential outside the planet is the same as if all mass is concentrated at the origin, or ...

$$\int_0^R \int_0^\pi \int_0^{2\pi} \frac{\lambda(\rho)}{|\mathbf{a} - \mathbf{r}|} \rho^2 \sin(\phi) d\theta d\phi d\rho = \frac{M}{|\mathbf{a}|}$$

$$M := \int_0^R \int_0^\pi \int_0^{2\pi} \lambda(\rho) \rho^2 \sin(\phi) d\theta d\phi d\rho.$$

