From our last episode....

+ How can we design a spaceship that travels according to plan in the solar system, responding to gravitational forces from every particle in the universe, when we don't know the mass density λ inside the sun or the planets? All we know is that λ depends only on ρ , not θ or ϕ .

Newton's theorem: If the mass density depends only on ρ, and becomes 0 above a certain value of ρ, then the gravitational potential outside the planet is the same as if all mass is concentrated at the origin:

If the force follows the inverse-square law,

$$\mathbf{F}_{pt} = -\frac{G_m q Q}{|\mathbf{r}|^2} \cdot \frac{\mathbf{r}}{|\mathbf{r}|}$$
hen
$$\mathbf{F}_{pt} = \nabla \frac{G_m q Q}{|\mathbf{r}|}$$

so the "gravitational potential" will be proportional to the integral of 1/ |r| times the mass density.

$$\int_0^R \int_0^\pi \int_0^{2\pi} \frac{\lambda(\rho)}{|\mathbf{a} - \mathbf{r}|} \rho^2 \sin(\phi) d\theta d\phi d\rho = \frac{M}{|\mathbf{a}|}$$

$$M := \int_0^R \int_0^\pi \int_0^{2\pi} \lambda(\rho) \rho^2 \sin(\phi) d\theta d\phi d\rho.$$

printage pantsing, a-gross, Axdy Spherical coords $g_{a}=a$ $\phi_{a}=0$ Of= Undef. S sind coso S sind sind 9 (05\$

dp -) sinpat +p2-zapcos¢ G SINO dw ZapN R ē-

Space travel would be a lot more complicated if gravitation didn't follow the inverse-square law to a high degree of accuracy.

The theme of today's lecture is...

Change!

The Great Variable Changer

Carl Gustav Jacob Jacobí 1804-1851

Sechsundzwanzigste Vorlesung.

Elliptische Coordinaten.

Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung der richtigen Variablen zu bestehen, zu

From Lecture 26 of the 8-th volume of Jacobi's collected lectures (p. 198): "The greatest difficulty in integrating differential equations seems to consist in introducing the right variables,..."

and not just Cartesian, polar, cylindrical, spherical.

Another interesting fact about Jacobi...

Mathematics Genealogy Project

Carl Gustav Jacob Jacobi

Biography

Ph.D. Humboldt-Universität zu Berlin 1825

Dissertation: Disquisitiones Analyticae de Fractionibus Simplicibus

Advisor: Enno Dirksen

Student(s): Click here to see the students listed in chronological order.

	Name	School	Year	Descendants
	Paul Gordan	Universität Breslau	1862	763
	Oswald Hermes	Europa-Universität Viadrina Frankfurt an der Oder	1849	
	Otto Hesse	Universität Königsberg	1840	5626
	Friedrich Richelot	Universität Königsberg	1831	5525
	<u>Wilhelm</u> Scheibner	Martin-Luther-Universität Halle- Wittenberg	1848	717

According to our current on-line database, Carl Jacobi has 5 students and 7420 descendants.

Home

Search

Extrema

About MGP

Links

FAQs

Posters

Submit Data

Mirrors

A service of the <u>NDSU</u> <u>Department of</u> <u>Mathematics</u>, in association with the <u>American</u> <u>Mathematical Society</u>.

⊧

Supported in part by a grant from <u>The Clay</u> <u>Mathematics Institute</u>.

Please <u>email us</u> with feedback.

"Curvilinear" coordinates.

Contest!

Example: elliptic

 $x = \cosh u \cos v$

But what are u and v in y = sinh u sin vterms of x and y?

Another example: the bipolar coordinates.

- x = sinh(t)/(cosh(t)-cos(s))
- y = sin(s)/(cosh(t)-cos(s))

How do you like these coordinate curves?

Bipolar coordinate lines:

(Adapted from graphic on Wikipedia.)

How would we integrate with curvilinear coordinates? +Write x = x(u,v), y = y(u,v)+Example: $x = r \cos \theta$, $y = r \sin \theta$. Make a "differential box" bounded by +(x(u,v),y(u,v)) $+(x(u+\Delta u,v),y(u+\Delta u,v))$ $+(x(u,v+\Delta v),y(u,v+\Delta v))$ $+(x(u+\Delta u,v+\Delta v),y(u+\Delta u,v+\Delta v))$

fixed value Ju fixed value Fixed value fixed value 12 = Vector from X(4,V) to X(4,V) + 3X Au > is ~ vector from X(4,V) to X(U,V) + 3× AV

Area = | 3x x 3x | AnAV. $=:|J(u,v)| \Delta u \Delta v,$ Where $J = \begin{bmatrix} 3x & 3y \\ 3x & 3y \end{bmatrix}$ Sometimes $\Im(u, v)$ writter: $\Im(u, v)$ $dxdy = \frac{\partial(x,y)}{\partial(u,v)} dudv$ Like chain rule In integration

Check on Jacobi with an example we know:

+ Example: $x = r \cos \theta$, $y = r \sin \theta$.

 $\frac{\partial(x,y)}{\partial(r,\theta)} = \int cos\theta \sin\theta \\ -rsm\theta rcos\theta \\ = r(cos^2\theta + sin^2\theta) = r$

Therefore $dA = r dr d\theta$

+J(u,v) =

Example

Integrate x+y over the region bounded by

-> U= X+y (3+04) V= Y-2X (0+02) (3 to 4) $\frac{y}{2u+v=3y}$ $u - v = 3X \quad x = \left(\frac{u - v}{3}\right)$ Y = (24+) $\left(\frac{1}{3}\right)$ 21) 3 _1] = 14 = 7 1

More examples, please

Calculate area and centroid.

You asked for it!

Good variables: u = xy, v = y/x

You asked for it!

Good variables: u = xy, v = y/x;

 $x=(u/v)^{1/2}, y=(uv)^{1/2}.$

In the good variables:

 $x=(u/v)^{1/2}$, $y=(uv)^{1/2}$, so J(u,v) = ...

(Finish as exercise)