From our last episode....

+ How can we design a spaceship that travels according to plan in the solar system, responding to gravitational forces from every particle in the universe, when we don't know the mass density λ inside the sun or the planets? All we know is that λ depends only on ρ, not θ or ϕ.

Another one of the great integrals

+ Newton's theorem: If the mass density depends only on ρ, and becomes 0 above a certain value of ρ, then the gravitational potential outside the planet is the same as if all mass is concentrated at the origin:

Another one of the great integrals

+If the force follows the inverse-square law,

$$
\mathbf{F}_{p t}=-\frac{G_{m} q Q}{|\mathbf{r}|^{2}} \cdot \frac{\mathbf{r}}{|\mathbf{r}|}
$$

then

$$
\mathbf{F}_{p t}=\nabla \frac{G_{m} q Q}{|\mathbf{r}|}
$$

so the "gravitational potential" will be proportional to the integral of $1 /$
$|r|$ times the mass density.

Another one of the great integrals

$$
\begin{gathered}
\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\lambda(\rho)}{|\mathbf{a}-\mathbf{r}|} \rho^{2} \sin (\phi) d \theta d \phi d \rho=\frac{M}{|\mathbf{a}|} \\
M:=\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \lambda(\rho) \rho^{2} \sin (\phi) d \theta d \phi d \rho
\end{gathered}
$$

$1 x d y$

$$
\vec{a}=a^{\hat{r}}
$$

Spherical coons

$$
\begin{aligned}
& \rho_{4}=a \\
& \phi_{7}=0 \\
& \theta_{t}=\text { undef. }
\end{aligned}
$$

integration variables

$$
=\sqrt{a^{2}-2 a p \cos \phi+\rho^{t}}
$$

$$
\vec{r}=\left(\begin{array}{l}
\rho \sin \phi \cos \theta \\
\rho \sin \phi \sin \theta \\
\rho \cos \phi
\end{array}\right]
$$

$$
\begin{aligned}
I & =\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\lambda(\rho)}{\sqrt{a^{2}+\rho^{2}-2 a \rho \cos \phi}} \rho^{2} d \theta \sin \phi d \phi d \rho \\
\vec{r} & =\left[\begin{array}{l}
\rho \sin \phi \cos \theta \\
\rho \sin \phi \sin \theta \\
\rho \cos \phi
\end{array}\right] \\
I & =\left.2 \pi \int_{0}^{R} \rho^{2} \lambda \rho \rho \int_{--1} \frac{d \omega}{\sqrt{a^{2}+\rho-2 a \rho \omega}}\right|^{R} d \rho \\
& \left.=\frac{4 \pi}{2 a} \int_{0}^{\rho^{2} \lambda(\rho)} \frac{-\sqrt{a^{2}+\rho^{2}-2 a \rho \omega}}{\rho}\right]_{-1}^{\prime}
\end{aligned}
$$

Another one of the great integrals

+ Space travel would be a lot more complicated if gravitation didn't follow the inverse-square law to a high degree of accuracy.

The theme of today's lecture is...

> Change!

The Great Variable Changer

Carl Gustan Jacob Jacobí 1804-1851

Sechsundzwanzigste Vorlesung.

Elliptische Coordinaten.

Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung der richtigen Variablen zu bestehen, zu

From Lecture 26 of the 8-th volume of Jacobi's collected lectures (p. 198): "The greatest difficulty in integrating differential equations seems to consist in introducing the right variables,..."
and not just Cartesian, polar, cylindrical, spherical.

Another interesting fact about Jacobi...

Polar coordinate lines

"Curvilinear" coordinates.
Example: elliptic
$x=\cosh u \cos v$
$y=\sinh u \sin v$
But what are u and v in terms of x and y ?

Another example: the bipolar coordinates.

$$
\begin{aligned}
& x=\sinh (t) /(\cosh (t)-\cos (s)) \\
& y=\sin (s) /(\cosh (t)-\cos (s))
\end{aligned}
$$

How do you like these coordinate curves?

Bipolar coordinate lines:

How would we integrate with curvilinear coordinates?

+ Write $x=x(u, v), y=y(u, v)$
+ Example: $x=r \cos \theta, y=r \sin \theta$.
+ Make a "differential box" bounded by

$$
\begin{aligned}
& +(x(u, v), y(u, v)) \\
& +(x(u+\Delta u, v), y(u+\Delta u, v)) \\
& +(x(u, v+\Delta v), y(u, v+\Delta v)) \\
& +(x(u+\Delta u, v+\Delta v), y(u+\Delta u, v+\Delta v))
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & \cong\left|\frac{\partial \vec{x}}{\partial u} \times \frac{\partial \vec{x}}{\partial v}\right| \Delta u \Delta v . \\
& =:|J(u, v)| \Delta u \Delta v,
\end{aligned}
$$

Whee $J=\left|\begin{array}{ll}\frac{\partial x}{\partial x} & \frac{\partial x}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}\end{array}\right| \quad$ Sometimes $\frac{\partial(x, y)}{\partial(u, v)}$

$$
d x d y=\frac{\partial(x, y)}{\partial(u, v)} d u d v
$$

Like chain rule in integration.

Check on Jacobi with an example we know:

+ Example: $x=r \cos \theta, y=r \sin \theta$.

$$
+J(u, v)=
$$

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(r, \theta)} & =\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right| \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
\end{aligned}
$$

Therefore $d A=r \quad d r d \theta$

Example

Integrate $x+y$ over the region bounded by

$$
\begin{aligned}
& y=3-x \\
& y=4-x \\
& y=2 x \\
& y=2 x+2
\end{aligned}
$$

$$
\begin{array}{ll}
y \text { 友 } & y=3-x \\
y=4-x \\
y=2 x \\
y=2 x+2
\end{array}
$$

Choose coordinates to simplify the limits.
What's constant on those bounding lines?
u goes from 3 to 4 ,
v goes from 0 to 2

Special Jacobian glasses

To Jacobi, that region looks like this:

More examples, please

More examples, please

Calculate area and centroid.

You asked for it!

Good variables: $u=x y, v=y / x$

You asked for it!

Good variables: $u=x y, v=y / x$;

$$
x=(u / v)^{1 / 2}, y=(u v)^{1 / 2} .
$$

In the good variables:

$$
\begin{aligned}
& x=(u / v)^{1 / 2}, y=(u v)^{1 / 2}, \text { so } \\
& J(u, v)=\ldots
\end{aligned}
$$

(Finish as exercise)

