Going Green

Math stories

t. Two mathematicians meet in the Skiles Building. The first asks the second how his family is, and the second answers: "They're great. My three daughters all had birthdays last week. The product of their ages is 72 . The sum of their ages is the same as your office number.

+ "Hmm..." says the first mathematician. I need to know something more before I can tell you how old your children are." The second answers: "Oh, my youngest daughter has a pet gerbil." The first mathematician says: "Aha, now I know."

Math stories

+ Two mathematicians meet in the Skiles Building. The first asks the second how her family is, and the second answers: "They're great. My three sons all had birthdays last week. The sum of their ages is 13 . The product of their ages is the same as your street number.
+ "Hmm..." says the first mathematician. I need to know something more before I can tell you how old your children are." The second answers: "Oh, my eldest son plays the violin." The first mathematician says: "Aha, now I know."

Reminder...

There's a test on Thursday!

Recall - The fun. theorem

Assuming C is a piecewise smooth curve, f is continuously differentiable, and $h=\nabla f$ on a set that is open and simply connected:

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{b})-f(\mathbf{a}) .
$$

Line integrals and arc length

Example: mass of a wire. Suppose that the mass density of a wire is the distance from the origin and the wire is in the form of a spiral. What would the total mass be?

Wire:

$$
\begin{aligned}
\text { Wire: } & x=t \cos t \quad \lambda(x, y)=\sqrt{x^{2}+y^{2}} \\
& y=t \sin t \quad(1) \\
d s= & |d \vec{x}|=\sqrt{(\cos (t)-\tan t)^{2}+(\sin t+t \cos)^{2}} d t \\
& =\sqrt{1+t^{2}} d t \\
\text { Mass }= & \int_{a}^{b} \sqrt{t^{2}\left(\cos ^{2} t+\sin ^{2} t\right)} \sqrt{1+t^{2}} d t=\int_{a}^{b} \sqrt{1+t^{2}} t d t
\end{aligned}
$$

Fa example, $a=0, b=4 \pi$:

$$
\int_{0}^{4 \pi} \sqrt{11 t^{2}} t d t=\int_{1}^{1+16 \pi^{2}} u^{\frac{1}{2}} \frac{1}{2} d u=\frac{1}{3}\left(\left(1+10^{2}\right)^{3 / 2}-1\right)
$$

Meet George Green

http://www-history.mcs.st-andrews.ac.uk/Biographies/Green.html

The next best thing to the

fundamental theorem of calculus for double integrals

Usual fundamental theorem - an integral can "cancel off" a derivative.

New: If you have a double integral of a derivative, you can cancel one integral off against the derivative. Carefully.

Consider the humble potato, Ω

Integrating $\frac{\partial Q(x, y)}{\partial X}$ ares the outline of a potato

As usual, we chop the potato up:

$$
\begin{aligned}
& \int_{\square} \frac{\partial Q}{\partial x}(x, y) d x d y \\
& \int_{Q}^{d}(Q(b, y)-Q(a, y)) d y \\
& +\int_{d}^{e}(Q(b, y)-Q(\phi(b, y)) d y
\end{aligned}
$$

In sum,

$$
\begin{aligned}
& \iint \frac{\partial Q}{\partial x}(x, y) d x d y \\
& =\oint_{\substack{C_{1} \cup c_{2} \cup c_{3} \cup c_{4} \\
C_{C \cdot}, W}} Q \hat{\jmath} \cdot d \vec{r}
\end{aligned}
$$

Likewise...

$$
\int_{\Omega_{N}} \int \frac{\partial P}{\partial y}(x, y) d x d y=-\int_{\partial \Omega_{N}} P(x, y) d x
$$

In sum,

+ The counterclockwise integral of Pi around the edge of a little sort-of rectangle is a double integral of - P_{y}. over the sort-of rectangle.
+ The counterclockwise integral of Q j around the edge of a little sort-of rectangle is a double integral of Q_{x}. over the sort-of rectangle.
+ So... there is a formula for the line integral of $F \cdot d r=(P i+Q j) \cdot d r$.

Now integrate over the whole potato

All interior contributions cancel! Once right, once left. Or once up, once down.

Green's formula

$$
\iint_{\Omega}\left(\frac{\partial Q}{\partial x}(x, y)-\frac{\partial P}{\partial y}(x, y)\right) d x d y=\oint_{C}(P(x, y) d x+Q(x, y) d y)
$$

This part is 0 if $F=\nabla \mathrm{f}$.
This part is $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$

Green's formula

$$
\int_{\Omega} \int\left(\frac{\partial Q}{\partial x}(x, y)-\frac{\partial P}{\partial y}(x, y)\right) d x d y=\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}
$$

The spooky thing about Green's theorem is that you can find out something about the inside by integrating around the outside.

Application: The planimeter

What does Green tell us when

1. $P=0, Q=x \quad$?
2. $P=-y, Q=0 \quad$?
3. $P=-y / 2, Q=x / 2 \quad ?$

RESPECT THERATTLESNAKES RIGHT TOPRIVACY - PLEASE S TAY ON THE TRAIL

PLEASE DONOT

 GLIME WALLS

Oh, there are the slides with the answers! Er, ... I don't think I'll post them just now.

Green is a two-way street

+ The line integral may be easier than the area integral.
+ The area integral may be easier than the line integral.

Green is a two-way street

\pm The line integral may be easier than the area integral
+Example: unit circle,

$$
\begin{gathered}
+P=-y \cos \left(\pi\left(x^{2}+y^{2}\right)^{7 / 3}\right), Q=x \cos \left(\pi\left(x^{2}+y^{2}\right)^{7 / 3}\right) \\
\partial Q / \partial x-\partial P / \partial y=2 \cos \left(\pi\left(x^{2}+y^{2}\right)^{7 / 3}\right)
\end{gathered}
$$

+ Not so nice inside the circle, but...

Green is a two-way street

+ The line integral may be easier than

 the area integral+The area integral may be easier than the line integral
$+\Phi\left(e^{x} \cos (2 y)+\sin \left(x^{4}\right)-2 y\right) d x+$ $\oint\left(y^{2} \sin \left(y^{2}\right) \sinh \left(y^{4}\right)-2 e^{x} \sin (2 y)\right) d y$

Holey Green regions

Holey Green regions

Holey Green regions

On the inside, counterclockwise is clockwise!

Holey Green regions

