The next test...

Copyright 2008 by Evans M. Harrell II.

The next test is．．．

tomorrow！

iMañana！
Morgen！
Demain！
Domani！
завтра！
내일！
明天！
amanhã！
aúpıo！
كلمات مرتبط

Kesho！
Bukas！
！กท
明日！
غدا！
कल！

The next test is...

Tomorrow!

But at least 18.6 won't be included in the test.

Fun plans for dead week...

Fun plans for next week...

+ No contest winner. Sigh!

2. (10 points) Take Ω as the parallelogram bounded by

$$
x-y=0, x-y=2, x+2 y=0, x+2 y=4
$$

Evaluate
We can chare variole to $u=x-y_{1}$

$$
V=x+24
$$

50

$$
\left.\begin{aligned}
x & =\frac{2 h+v}{3} \\
y & =(v-u) / / 3 \\
\frac{\partial(x y)}{\partial(y)} & =\left|\frac{2}{3}-\sqrt{3}\right|=1 / 3 \\
\frac{1}{3} & 1 / 3
\end{aligned} \right\rvert\,=1 / 3
$$

Green's formula

$$
\iint_{\Omega}\left(\frac{\partial Q}{\partial x}(x, y)-\frac{\partial P}{\partial y}(x, y)\right) d x d y=\oint_{C}(P(x, y) d x+Q(x, y) d y)
$$

Green's formula

$$
\int_{\Omega} \int\left(\frac{\partial Q}{\partial x}(x, y)-\frac{\partial P}{\partial y}(x, y)\right) d x d y=\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}
$$

The spooky thing about Green's theorem is that you can find out something about the inside by integrating around the outside.

Holey Green regions

31. Let C be a piecewise-smooth Jordan curve that does not pass through the origin. Evaluate

$$
\oint_{C} \frac{x}{x^{2}+y^{2}} d x+\frac{y}{x^{2}+y^{2}} d y
$$

(a) if C does not enclose the origin.
(b) if C does enclose the origin.

31. Let C be a piecewise-smooth Jordan curve that does not pass through the origin. Evaluate

$$
\oint_{C} \frac{x}{x^{2}+y^{2}} d x+\frac{y}{x^{2}+y^{2}} d y
$$

(a) if C does not enclose the origin.
(b) if C does enclose the origin.

51. Let T be a solid with volume

$$
V=\iiint_{T} d x d y d z=\int_{0}^{3} \int_{0}^{6-x} \int_{0}^{2 x} d z d y d x
$$

Sketch T and fill in the blanks.
(a) $V=\int_{\square}^{\square} \int_{\square}^{\square} \int_{\square}^{\square} d y d x d z$.
(b) $V=\int_{0}^{\square} \int_{0}^{\square} \int_{0}^{\square} d y d z d x$.
(c) $V=\int_{0}^{6} \int_{0}^{0} \int_{0}^{0} d x d y d z+\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} d x d y d z$.

Superficial thoughts

How much paint do you need to turn these objects blue?

But first,

+ How do we describe a surface?

Describing surfaces in 3D

$x=r_{0} \sin \phi \cos \theta$, $y=r_{0} \sin \phi \sin \theta$, $z=r_{0} \cos \phi$.
r_{0} is a fixed quantity, while θ and ϕ are parameters to vary.

Describing surfaces in 3D

$$
\begin{aligned}
& x=r_{0} \sin \phi \cos \theta \\
& y=r_{0} \sin \phi \sin \theta \\
& z=r_{0} \cos \phi
\end{aligned}
$$

Two dimensions two parameters.

Describing surfaces in 3D

Wood Möbius sculpture by Larry Frazier

Some standard surfaces

Paraboloid (z=1- r^{2})

1. Paraboloid.

$\ln [1]:=\operatorname{ParametricPlot} 3 \mathrm{D}\left[\left\{x \operatorname{Cos}[\mathrm{th}], r \operatorname{Sin}[\mathrm{th}], 1-x^{\wedge} 2\right\},\{x, 0,1\}\right.$, \{th, -Pi, Pi\}]

Ellipsoid $\left(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1\right)$

2. Ellipsoid.

$\operatorname{In}[3]=$ ParametricPlot3D[\{2Sqrt[1-r^2] $r / \operatorname{Abs}[r], r \operatorname{Cos}[t h], r \operatorname{Sin}[t h]\}$, $\{r,-1,1\},\{t h,-P i, P i\}]$

Torus - rotate a circle around an axis

3. Torus.

$\ln [4]=$ ParametricPlot $3 \mathrm{D}[\{(2+\operatorname{Cos}[$ beta] $) \operatorname{Cos}[$ alpha],
(2 + Cos[beta]) $\sin [a l p h a], \operatorname{Sin}[b e t a]\},\{a l p h a, ~ 0,2 \mathrm{Pi}\}$, \{beta, 0, 2 Pi\}]

Cone ($\mathrm{z}=r$)

4. Cone.

$\ln [5]:=\operatorname{ParametricPlot} 3 \mathrm{D}[\{r \operatorname{Cos}[\mathrm{th}], r \operatorname{Sin}[\mathrm{th}], r\},\{r, 0,1\}$,
\{th, 0, 2 Pi \}]

Hyperboloid (of one sheet, $r^{2}-z^{2}=1$)

5. Hyperboloid.

$\ln [9]=$ ParametricPlot $3 \mathrm{D}\left[\left\{\operatorname{Sqrt}\left[\mathrm{z}^{\wedge} 2+1\right] \operatorname{Cos}[\mathrm{th}], \operatorname{Sqrt}\left[z^{\wedge} 2+1\right] \operatorname{Sin}[t h], z\right\}\right.$, $\{z,-2,2\},\{t h, 0,2 P i\}]$

Out[9]=

Some other surfaces with "local curilinear coordinates"

Integrating over surfaces

How large is the little parallelogram when we increase
θ to $\theta+\Delta \theta$
and
ϕ to $\phi+\Delta \phi$?

What did we learn from this man a few lectures ago?

There is nothing flat about this picture!

The Fundamental Vector Product

$$
\mathbf{N}(u, v)=\frac{\partial \mathbf{r}}{\partial u}(u, v) \times \frac{\partial \mathbf{r}}{\partial v}(u, v)
$$

$$
\mathbf{N}(u, v)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{array}\right|
$$

$$
\mathbf{N}(u, v)=\left(\begin{array}{l}
\frac{\partial y}{\partial u} \frac{\partial z}{\partial v}-\frac{\partial z}{\partial u} \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} \frac{\partial x}{\partial v}-\frac{\partial x}{\partial u} \frac{\partial z}{\partial v} \\
\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v}
\end{array}\right)
$$

What makes the FVP so cool?

+ The area element $d A=|N| d u d v$

What makes the FVP so cool?

+ The area element $d A=|N| d u d v$
+ So we use it whenever we integrate over the surface.
$d A=\|\vec{N}\| d u d v$
Gemeral fonmala $f \Delta i$) fa surface anea if clesallu \sum with panametas U,V

Example - the sphere of radius a

$+\mathbf{r}_{\phi}=(\mathrm{a} \cos \phi \cos \theta) \mathbf{i}+(\mathrm{a} \cos \phi \sin \theta) \mathbf{j}+(-\mathrm{a} \sin \phi) \mathbf{k}$
$+\mathbf{r}_{\theta}=(-a \sin \phi \sin \theta) \mathbf{i}+(a \sin \phi \cos \theta) \mathbf{j}+0 \mathbf{k}$
$+r_{\phi}$ and r_{θ} are perpendicular
$+\mathbf{N}=\left(a^{2} \sin ^{2} \phi \cos \theta\right) \mathbf{i}+\left(a^{2} \sin ^{2} \phi \sin \theta\right) \mathbf{j}+\left(a^{2} \cos \phi \sin \phi\right) \mathbf{k}$
$+\mathrm{dA}=|\mathrm{N}| \mathrm{d} \phi \mathrm{d} \theta=\mathrm{a}^{2} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta$
+(Work it out - it simplifies!)

What makes the FVP so cool?

+ The area element $d A=|N| d u d v$
+N points perpendicularly out from the surface.

What makes the FVP so cool?
 + The area element $\mathrm{dA}=|\mathrm{N}| \mathrm{du} \mathrm{dv}$

+N points perpendicularly out from the surface.

+ So we use it when we figure out tangent planes.

