## T.G.I.W.



Copyright 2008 by Evans M. Harrell II.

## Maxwell's equations

## Wikipedia article on Maxwell's Equations:

## General case

The Equations are given in Sl units. See below for CGS units

| Name | Differential form | Integral form |
| :--- | :--- | :--- |
| Gauss's law: | $\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}$ | $\oint_{S} \mathbf{E} \cdot \mathrm{~d} \mathbf{A}=\frac{Q_{S}}{\epsilon_{0}}$ |
| Gauss' law for magnetism <br> (absence of magnetic <br> monopoles): | $\nabla \cdot \mathbf{B}=0$ | $\oint_{S} \mathbf{B} \cdot \mathrm{~d} \mathbf{A}=0$ |
| Faraday's law of induction: | $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$ | $\oint_{\partial S} \mathbf{E} \cdot \mathrm{~d} \mathbf{l}=-\frac{d \Phi_{B, S}}{d t}$ |
| Ampère's Circuital Law <br> (with Maxwell's correction): | $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$ | $\oint_{\partial S} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=\mu_{0} I_{S}+\mu_{0} \epsilon_{0} \frac{d \Phi_{E, S}}{d t}$ |

The following table provides the meaning of each symbol and the SI unit of measure:

| Symbol | Meaning (first term is the most common) | SI Unit of Measure |
| :--- | :--- | :--- |
| $\nabla$. | the divergence operator | per meter (factor contributed by |
| $\nabla \times$ | the curl operator | applying either operator) |

## Grad, Curl, and Div



## Grad, Curl, and Div

+ Just for fun, think of $\nabla$ as a vector "operator" with components
$+\partial / \partial x, \partial / \partial y$, and $\partial / \partial z$.
+ And do with it what you like to do with vectors.


## Favorite functions of the day

+Scalar function
$+x y,|r|^{3}$

+ Vector fields
$+x \mathbf{i}+y \mathbf{j}+z k$, a.k.a. r.
$+-y \mathbf{i}+\boldsymbol{x} \mathbf{j}+0$ k.
$+-\mathbf{r} /|\mathbf{r}|^{3}$. Why is this one important?


## From Wolfram MathWorld

(Go to that site to see graphics of vector fields.)

## New derivatives

+ Derivative in out notation
$+\nabla=$ grad
$+\nabla \cdot=\operatorname{div}$
$+\nabla \times=$ curl



## New derivatives

+ Derivative in out notation

$$
\begin{aligned}
& +\nabla \mathrm{f}=\operatorname{grad} \mathrm{f} \\
& \text { scalar } \\
& +\nabla \cdot \mathbf{v}=\operatorname{div} \mathbf{v} \\
& +\nabla \text { vector } \\
& +\nabla \times \mathbf{v}=\operatorname{curl} \mathbf{v} \text { vector } \underbrace{}_{\text {a.k.a. rot } \mathbf{v}}
\end{aligned}
$$

## New derivatives

+ Derivative in out notation
$+\nabla f=\operatorname{grad} f$ scalar vector gradient
$+\nabla \cdot \mathbf{v}=\operatorname{div} \mathbf{v}$ vector scalar divergence
$+\nabla \times \mathbf{v}=$ curl $\mathbf{v}$ vector vector curl
a.k.a. rot v


## Grad, curl, and div

+ grad. $\nabla f$
+The direction uphill and the slope
+ Critical points
+Normal vectors and tangent planes


## Grad, curl, and div

## + div. $\nabla \cdot v$

+Quantifies the tendency of a vector field to spread.
+Related to flux (stay tuned)

## Grad, curl, and div

+curl. $\nabla \times v$
+Quantifies the tendency of a vector field to swirl.

+ Related to flux (stay tuned)


## New rules

+ Linear rules
+ Product rules
+ Chain rules
+ Higher derivatives
+ Laplacian $\nabla^{2}=\nabla \cdot \nabla$
$+\nabla \times \nabla \mathrm{f}=$
$+\nabla \cdot \nabla \times \mathbf{V}=$


## New rules

+ Linear rules
+ Product rules
+ Chain rules
+ Higher derivatives
+ Laplacian $\nabla^{2}=\nabla \cdot \nabla$
$+\nabla \times \nabla f=$
$+\nabla \cdot \nabla \times \mathbf{v}=$


## Favorite functions of the day

+Scalar function
$+x y,|r|^{3}$

+ Vector fields
$+x \mathbf{i}+y \mathbf{j}+z k$, a.k.a. r.
$+-y \mathbf{i}+\boldsymbol{x} \mathbf{j}+0$ k.
$+-\mathbf{r} /|\mathbf{r}|^{3}$. Why is this one important?
+ Scalar function
$+x y,|r|^{3}$
+ Vector fields

$$
\begin{aligned}
& +x \mathbf{i}+y \mathbf{j}+z k, \text { a.k.a. } \mathbf{r} . \\
& +-y \mathbf{i}+x \mathbf{j}+0 k . \\
& +-\mathbf{r} /|\mathbf{r}|^{3} .
\end{aligned}
$$

## Math videos of the day

+ Sarah's choice: I will derive, at
+ http://www.youtube.com/watch?v=P9dpTTpjymE
+Kenneth's choices:
+The derivative song, at
http://www.youtube.com/watch?v=eEhkBmHqGA8
+Pi (the movie), http://www.pithemovie.com/


## This Thanksgiving, don't just eat the turkey and $\pi$....

Remember your Green's!

## The End

