

Copyright 2008 by Evans M. Harrell II.

Maxwell's equations

Wikipedia article on Maxwell's Equations:

General case

[edit]

The Equations are given in SI units. See below for CGS units.

Name	Differential form	Integral form
Gauss's law:	$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$	$\oint_{S} \mathbf{E} \cdot \mathbf{dA} = \frac{Q_{S}}{\epsilon_{0}}$
Gauss' law for magnetism (absence of magnetic monopoles):	$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot \mathrm{d}\mathbf{A} = 0$
Faraday's law of induction:	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_{B,S}}{dt}$
Ampère's Circuital Law (with Maxwell's correction):	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	$\oint_{\partial S} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_S + \mu_0 \epsilon_0 \frac{d\Phi_{E,S}}{dt}$

The following table provides the meaning of each symbol and the SI unit of measure:

	Symbol	Meaning (first term is the most common)	SI Unit of Measure
∇	$\nabla \cdot$	the divergence operator	per meter (factor contributed by applying either operator)
	$\nabla imes$	the curl operator	

Grad, Curl, and Div

Grad, Curl, and Div

Just for fun, think of ∇ as a vector "operator" with components
+∂/∂x, ∂/∂y, and ∂/∂z.
And do with it what you like to do with vectors.

Favorite functions of the day

Scalar function
 xy, |r|³

Vector fields
*x i + y j + z k, a.k.a. r.
+y i + x j + 0 k.
*-r/|r|³. Why is this one important?

From Wolfram MathWorld

(Go to that site to see graphics of vector fields.)

New derivatives

Derivative in out notation

+ ∇f = grad f scalar + $\nabla \cdot v$ = div v vector + $\nabla \times v$ = curl v vector

gradient divergence curl a.k.a. rot v

New derivatives

Derivative in out notation

+∇f= grad f scalar vector gradient
+∇•v = div v vector scalar divergence
+∇×v = curl v vector vector curl a.k.a. rot v

Grad, curl, and div

+grad. ∇f

The direction uphill and the slope

Critical points

Normal vectors and tangent planes

Grad, curl, and div

 Quantifies the tendency of a vector field to spread.

Related to flux (stay tuned)

+div. $\nabla \cdot \mathbf{v}$

Grad, curl, and div

+curl. $\nabla \times \mathbf{v}$

 Quantifies the tendency of a vector field to swirl.

Related to flux (stay tuned)

New rules

Linear rules
Product rules
Chain rules
Higher derivatives
+Laplacian ∇² = ∇•∇
+∇×∇f =
+∇•∇×v =

New rules

- Linear rules
- Product rules
- + Chain rules
- Higher derivatives
 - + Laplacian $\nabla^2 = \nabla \cdot \nabla$
 - + $\nabla \times \nabla f =$
 - + $\nabla \cdot \nabla \times \mathbf{v} =$

Favorite functions of the day

Scalar function
 xy, |r|³

Vector fields
*x i + y j + z k, a.k.a. r.
+y i + x j + 0 k.
*-r/|r|³. Why is this one important?

Math videos of the day

Sarah's choice: I will derive, at

 http://www.youtube.com/watch?v=P9dpTTpjymE

 Kenneth's choices:

 The derivative song, at

 http://www.youtube.com/watch?v=eEhkBmHqGA8

 Pi (the movie), http://www.pithemovie.com/

This Thanksgiving, don't just eat the turkey and π

Remember your Green's!

