Whoo-hoo! Way to go Jackets!

reminder - participation in special PILOT survey for CIOS Inbox $\mid \times$ dean $\mid \times$ teaching $\mid \times$

Tris Utschig to Evans
show details 2:37 PM (1 hour ago)
Reply
Dear Dr. Harrell,

Can you please forward the message below to your students and announce in class? You have 2 responses for your course so far. Thank you for your help with this PILOT!

Sincerely,
Tris Utschig

Good morning/afternoon/evening,

Last week you should have received an announcement and/or email about a PILOT effort to re-design the CIOS (Course/Instructor Opinion Survey). If you have already completed the PILOT survey - thank you!

However, additional responses are needed. Please help Georgia Tech improve our survey by responding to the questions found at http://www.surveymonkey.com/s.aspx?sm=p8NDOUb5hqqL3KWuj58csw 3d 3d between now and Dec 14. This will only take 5-15 minutes of your time (depending on how many comments you choose to add).

I do hope that you will choose to help out Georgia Tech by participating.
Thank you.

Current class standing available

+ Check main class webpage for link.

New rules

+ Linear rules
+ Product rules
+ Chain rules
+ Higher derivatives
+ Laplacian $\nabla^{2}=\nabla \cdot \nabla$
$+\nabla \times \nabla f=$
$+\nabla \cdot \nabla \times v=$
$+\nabla \times \nabla \times \mathbf{v}=$

New rules

+ Linear rules
+ Product rules
+ Chain rules
+ Higher derivatives
+ Laplacian $\nabla^{2}=\nabla \cdot \nabla$
$+\nabla \times \nabla f=$
$+\nabla \cdot \nabla \times v=$
$+\nabla \times \nabla \times \mathbf{v}=$

$$
\begin{aligned}
& \nabla(f+g)=\alpha \nabla f+\nabla g \\
& \nabla \cdot(\alpha \vec{v}+\beta \vec{w})=\alpha \nabla \cdot \vec{v}+\beta \nabla \cdot \vec{w} \\
& \nabla \times(\alpha \vec{v}+\beta \vec{w})=\alpha \nabla \times \vec{v}+\beta \nabla \times \vec{w}
\end{aligned}
$$

"del cross w"
$\vec{V} \cdot \nabla$ diffent from $\nabla \stackrel{\rightharpoonup}{V}$
is still| a

$$
\begin{aligned}
& \text { diff op } \\
& =v_{1} \frac{\partial x}{\partial x}+v_{2} \frac{\partial f}{\partial y}
\end{aligned}
$$

The importance of PDEs

+ E-Mag
+ Fluids
+ Quantum
+ Optics
+ Elasticity
+ Diffusion
+ Finance
+ Waves
+Acoustics
+ Epidemiology
+ Cosmology
+ Climate modeling

Laplacian

+Laplace's equation for "harmonic fns":

$$
+\Delta u=0 \text {. }
$$

+Equilibrium membrane, electric potential

+ Heat or diffusion equation

$$
+\mathrm{u}_{\mathrm{t}}=\mathrm{k} \Delta \mathrm{u}
$$

+ Temperature, density of dye
+ Wave equation

$$
\begin{aligned}
+\mathrm{u}_{\mathrm{tt}} & =\mathrm{c}^{2} \Delta \mathrm{u} . \\
& + \text { Sound, light }
\end{aligned}
$$

+ Scalar function
$+x y,|r|^{3}$
+ Vector fields

$$
\begin{aligned}
& +x \mathbf{i}+y \mathbf{j}+z k, \text { a.k.a. } \mathbf{r} . \\
& +-y \mathbf{i}+x \mathbf{j}+0 k . \\
& +-\mathbf{r} /|\mathbf{r}|^{3} .
\end{aligned}
$$

New theorems Prom old.
Green: $\int_{-2} \int_{=}\left(\frac{\partial Q}{\partial x}-\frac{\partial p}{\partial y}\right) d x d y=\oint_{F} \vec{F} \cdot d \vec{r}=\oint_{=} \vec{F} \cdot \hat{t} d s$ where $\vec{F}=P \hat{\imath}+Q \hat{\jmath}$
But what if we choose

$$
\begin{aligned}
& \vec{H}=Q \hat{\imath}-P \hat{\jmath} \text { ? Le it }=\iint_{\Omega} \nabla \cdot H d A . \\
& \text { Right is } \oint\left(P t_{x}+Q t_{y}\right) d s \\
&=\oint\left[\begin{array}{c}
Q \\
-P
\end{array}\right] \cdot\left[\begin{array}{c}
t_{y} \\
-t_{x}
\end{array}\right] d s \\
&=\oint\left(\vec{H} \cdot \hat{n}_{\text {out }}\right) d s \\
& \iint_{\Omega} \nabla \cdot \vec{H} d a=\oint(\vec{H} \cdot \hat{n}) d s \quad \text { "Divergence } \\
& \text { theron." }
\end{aligned}
$$

Divergence examples

+ Find the flux of $\mathbf{v}=x y \mathbf{i}+x^{2} y^{2} \mathbf{j}$ across the quarter ellipse $x=4 \cos t, y=\sin$ $\mathrm{t}, \mathrm{t}=0 . . \pi / 2$?
+ A fluid has velocity

$$
\left(x y^{3}-\sin (y)\right) \mathbf{i}+\left(y x^{3}-\cos (y)\right) \mathbf{j}
$$

What is the rate of flow out of the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$?

$$
\begin{aligned}
& \left(\frac{x}{4}\right)^{2}+y^{2}=1 \underset{\rightarrow}{?} \\
& G \vec{V} \cdot \hat{n} d s \\
& =\iint_{\Omega} \nabla \cdot \vec{V} d A \\
& \nabla \cdot v=\frac{\partial}{\partial x}(x y)+\frac{\partial}{\partial y}\left(x^{2} y^{2}\right) \\
& \begin{array}{c}
=y\left(1+2 x^{2}\right) \\
\left.\left.\int_{0}^{1} y \int_{0}^{\left(4 \sqrt{1-y^{2}}\right.}\left(1+2 x^{2}\right) d x d y=\int_{0}^{1} y\left(4 \sqrt{1-y^{2}}+\frac{2}{2}(1+1)^{2}\right)^{3}\right)^{2}\right) y
\end{array}
\end{aligned}
$$

The divergence theorem in 3-0

$$
\begin{aligned}
& 2 D: \iint_{\Omega} \nabla \cdot H d^{2} x=\oint_{\partial \Omega}(\vec{H} \cdot \hat{n}) d s \\
& 3 D: \iint_{\Omega} \nabla \cdot H d^{3} x=\iint_{\partial \Omega}(\vec{H} \cdot \hat{n}) d^{2} x \\
& n D: \int_{\Omega} \ldots \int_{\Omega} \nabla \cdot H d^{n} x=\int_{\partial \Omega} \int(\vec{H} \cdot \hat{n}) d^{n-1} x
\end{aligned}
$$

Conservation of mass and the
 continuity equation

$+\partial \rho / d r=-(\nabla \cdot \rho v)$ says that the mass in a small region changes in time in proportion (negatively) to the flux out of the region.

Suppose a chase density ρ is distribute inside a sphere inclependently of argyle. What is the elective field \vec{D} at the boundary?

(In free space E and D are the same.)

S1. Symmetry indicates that it will (a) point radially andes (b) have a constant magnitude
Therefore $\int_{\partial B} \vec{E} \cdot \hat{n} d a=|E| \cdot 4 \pi R^{2}$
$B y \operatorname{Gan} \beta, \quad \int_{\partial B} E \cdot \hat{n} d a=\int_{B} \nabla \cdot E d^{3} x$

$$
=\frac{1}{2_{0}} \int \rho d^{3} x=\frac{Q}{\varepsilon_{0}}
$$

Conclusion: $|E|=\frac{Q}{4 \pi \varepsilon_{0} R^{2}} \quad, \vec{E}=\frac{Q \vec{r}}{4 \pi \varepsilon_{0}|\vec{r}|^{3}}$

Cancellation of edges does not require adjacent parallelograms to be in the same plane.

Stokes's Theorem

Let b be a curve a lay the edge of a surface Ω (not a spumed flat).

Let 6 be a curve along the edge of a (smooth, orientible, connected) survou 2 . Let the unit normal to R point according to the right hand cole with respect to the orientation of E. Them ta any smooth vechfletelF,

$$
\int_{\Omega} \int_{\sigma}(\nabla \times F) \cdot \hat{n} d a=\oint_{\tau} \vec{F} \cdot d \vec{r}
$$

Examples

+ How much work is done by the force $x i+y^{2} z j+x y^{2} \mathbf{k}$, when traversing the edge of the parallelogram $x+2 y-z=0,-1 \leq x \leq 0$, $0 \leq y \leq 1$?
+ How much work is done by the force $(x+y) \mathbf{i}+(y-z) \mathbf{j}+(x-y) \mathbf{k}$, when traversing the boundary of the paraboloid $z=4-x^{2}-y^{2}$ above the square $0 \leq x \leq 1,0 \leq y \leq 1$?

The Laplacian

$+\Delta$ or $\nabla^{2}=\nabla \cdot \nabla=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$

+ If $\Delta u=0$, "Laplace's equation," then u is "harmonic."
$+x-y$
$+x^{2}-y^{2}$
$+e^{x} \cos y$
$+x^{2}+z^{2}-y^{2}$ (NOT THIS ONE!)

The End

