## MATH 2401 - Harrell

# Tangent vectors, or 

how to go straight when you are on a bender.

## In our previous episode:

1. Vector functions are curves. The algebraic side of the mathematian's brain thinks about vector functions. The geometric side sees curves.

## In our previous episode:

1. Vector functions are curves.
2. Don't worry about the basic rules of calculus for vector functions. They are pretty much like the ones you know and love.


Tangent vectors - the derivative

## of a vector function

## Tangent vectors

+Think velocity!

+ Tangent lines
+ Tell us more about these!


## Tangent vectors

+ The velocity vector $v(t)=r^{\prime}(t)$ is tangent to the curve - points along it and not across it.


Paramerivins a line.

$$
\begin{aligned}
& +\overrightarrow{0})^{\text {dircth }} \\
& L=\left\{\vec{r}(u=\overrightarrow{=}+\vec{r}\}_{0}^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
\vec{P} & =\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
\bar{V} & =\left[\begin{array}{l}
5 \\
5
\end{array}\right] \\
L & =\left\{\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)+4 \begin{array}{l}
5 \\
5 \\
5
\end{array}\right] \\
& =\left\{\begin{array}{l}
3+5 n \\
2+5 u \\
1+5 u \\
1+5 u
\end{array}\right\}
\end{aligned}
$$

## Example: spiral

Spiral[t_] :=\{t $\operatorname{Cos}[t], \operatorname{t} \operatorname{Sin}[t]\}$<br>Spiral3D[t_] :=\{tCos[t], $t \operatorname{Sin}[t], 0\}$<br>ParanetricPlot[Spiral[t], \{t, 0, 10\}]



$$
\text { Spiral } \vec{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
t \cos t \\
t \sin t
\end{array}\right]
$$

Velocity $\left[\begin{array}{l}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{l}\cos t-t \sin t \\ \sin t+t \cos t\end{array}\right]$
This is a tangent vesta $\vec{V}$ at pt. $\vec{r}$

$$
\vec{L}=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\vec{r}_{0}+u \vec{v}\right\}
$$

* parametric form!


$$
\text { Ex: } t=\frac{\pi}{4}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\frac{\pi}{4 \sqrt{2}} \\
\frac{\pi}{4 \sqrt{2}}
\end{array}\right]
$$

$$
\vec{V}=\frac{\frac{1}{\sqrt{2}}-\frac{\pi}{4 \sqrt{2}}}{\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}}
$$

$$
\vec{L}=\left[\begin{array}{l}
\frac{\pi}{4 \sqrt{2}}+u\left(\frac{1}{\sqrt{2}}-\frac{\pi}{4 \sqrt{2}}\right) \\
\frac{\pi}{4 \sqrt{2}}+u\left(\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}\right)
\end{array}\right]
$$



## Curves

+ Position, velocity, tangent lines and all that: See Rogness applets (UMN) at
http://www.math.umn.edu/~rogness/multivar/calc2demos/curves.html


## Tangent vectors

+ Think velocity!
+ Tangent lines
+ Approximation and Taylor's formula
+ Numerical integration
+ Maybe most importantly - T is our tool for taking curves apart and understanding their geometry.


## Example: helix

$\ln [6]:=\operatorname{Helix}[t]]:=\{\operatorname{Cos}[4 \mathrm{Pi} t], \operatorname{Sin}[4 \mathrm{Pi} t], \quad t\}$
$\ln [9]:=$ ParametricPlot3D[Helix[t], \{t, 0, 5\}, PlotPoints $\rightarrow$ 360]


## Example: Helix

## Helix

## $\vec{\Gamma}(t)=\cos (4 \pi t) \hat{\imath}+\sin (4 \pi t) \hat{\jmath}+t \hat{k}$

Velocity
$\vec{r}^{\prime}(t)=-4 \pi \sin (4 \pi t) \hat{\imath}+4 \pi \cos (4 \pi t) \hat{\jmath}+\hat{k}$

## speed

$\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{(4 \pi \sin (4 \pi t))^{2}+(4 \pi \cos (4 \pi t))^{2}+1}$
$=\sqrt{1+16 \pi^{2}}$
Velocity changes, as a vector speed does not change.
This is a special fact. Usually
speed does champ

## Unit tangent vectors

+ Move on curve with speed 1.
$+\mathrm{T}(\mathrm{t})=\mathbf{r}^{\prime}(\mathrm{t}) /\left|\mathbf{r}^{\prime}(\mathrm{t})\right|$
+ Only 2 possibilities, $\pm$ T.


## Example: ellipse

$\ln [2]:=\operatorname{ParanetricPlot}[\{2 \operatorname{Cos}[t], \operatorname{Sin}[t]\},\{t, 0,2 P i\}]$



## Example: ellipse

$\ln [2]:=\operatorname{ParametricPlot}[\{2 \operatorname{Cos}[t], \ln [t]\},\{t, 0,2 P i\}]$


## Example: ellipse

$\ln [2]:=\operatorname{ParametricPlot}[\{2 \operatorname{Cos}[t], \operatorname{Sin}[t]\},\{t, 0,2 P i\}]$


## Example: spiral

Spiral[t_] :=\{t $\operatorname{Cos}[t], \operatorname{t} \operatorname{Sin}[t]\}$<br>Spiral3D[t_] :=\{tCos[t], $t \operatorname{Sin}[t], 0\}$<br>ParanetricPlot[Spiral[t], \{t, 0, 10\}]



## Example: spiral

Speed[r_] := Sqrt[D[r[[1]], $t]^{\wedge} 2+\operatorname{D}\left[r[[2]], t^{\wedge} 2+D[r[[3]], ~ t]^{\wedge} 2\right]$
Tang[r_] := \{D[r[[1]], t], $D[r[[2]], t], \operatorname{Dr[[3]],~t]\} /Speed[r]}$
General::spell : Possible spelling error: new symbol name "Tang" is similar to existing symbols \{Tan, Tanh\}. More...
Tang[Spiral3D[t]]
$\left\{\frac{\operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{(t \operatorname{Cos}[t]+\operatorname{Sin}[t])^{2}+(\operatorname{Cos}[t]-t \operatorname{Sin}[t])^{2}}} \cdot \frac{t \operatorname{Cos}[t]+\operatorname{Sin}[t]}{\sqrt{(t \operatorname{Cos}[t]+\operatorname{Sin}[t])^{2}+(\operatorname{Cos}[t]-t \operatorname{Sin}[t])^{2}}}, 0\right\}$
Simplif ${ }^{[1]}$ [
$\left\{\frac{\operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, \frac{t \operatorname{Cos}[t]+\operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\}$

## Example: Helix

## Curves

- Angle of intersection
- Spiral $r=4 \theta / \pi$ and circle
- $x=4 t \cos \pi t, y=4 t \sin \pi t$
- $x=\cos (s), y=\sin (s)$
- intersect at $t=1 / 4, s=\pi / 4$


The ample forks low than 苂. About
tangent vectors

$$
\begin{aligned}
& \frac{r_{1}^{\prime}}{\prime}(t)=\left[\begin{array}{l}
4 \cos \pi t-4 \pi t \sin \pi t \\
4 \sin \pi t+4 \pi t \cos \pi t
\end{array}\right] \\
& r_{2}^{\prime}(s)=\left[\begin{array}{l}
-\sin (s) \\
\cos (s)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}_{1}^{\prime}\left(\frac{1}{4}\right)=\left[\begin{array}{l}
2 \sqrt{2}-\pi / \sqrt{2} \\
2 \sqrt{2}+\pi / \sqrt{2}
\end{array}\right] \quad\left|r_{1}^{\prime}\left(\frac{1}{4}\right)\right|=\sqrt{16+\pi^{2}} \\
& r_{2}^{\prime}\left(\frac{\pi}{4}\right)=[-1 / \sqrt{2}) \quad\left|r_{2}^{\prime}\left(\frac{\pi}{4}\right)\right|=1 \\
& \vec{r}_{1}^{\prime}\left(4 \cdot r_{2}^{\prime}\left(\frac{\pi}{4}\right)=\pi=\sqrt{16+\pi^{2}} \cdot 1 \cdot \cos \theta\right.
\end{aligned}
$$

Therefore $\cos \theta=\frac{\pi}{\sqrt{16+\pi^{2}}}, \theta \doteq 0.905 \mathrm{rad}$

## Curves

+ Even if you are twisted, you have a normal!




## Normal vectors

$\pm$ A normal vector points in the direction the curve is bending.

+ It is always perpendicular to T .
+ What's the formula?...............


## Normal vectors

$$
\mathrm{N}=\mathrm{T}^{\prime} /\left\|\mathrm{T}^{\prime}\right\| .
$$

+ Unless the curve is straight at position P, by this definition $\mathbf{N}$ is a unit vector perpendicular to T. Why?


# Tangents, Normals, and Arc Length 

Some nice curves
How to look at the curves from the inside

## Example: spiral in 3D

$\operatorname{Speed}\left[r \_\right]:=\operatorname{Sqrt}\left[\mathrm{D}[\mathrm{r}[[1]], \mathrm{t}]^{\wedge} 2+\mathrm{D}[\mathrm{r}[[2]], \mathrm{t}]^{\wedge} 2+\mathrm{D}[\mathrm{r}[[3]], \mathrm{t}]^{\wedge} 2\right]$
$\operatorname{Tang}\left[r_{-}\right]:=\{D[r[[1]], t], \operatorname{D}[r[[2]], t], \operatorname{D}[r[[3]], t]\} / S p e e d[r]$
General::spell : Possible spelling error: new symbol name "Tang" is similar to existing symbols \{Tan, Tanh\}. More...
Tang [Spiral3D [t]]
$\left\{\frac{\operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{(t \operatorname{Cos}[t]+\operatorname{Sin}[t])^{2}+(\operatorname{Cos}[t]-t \operatorname{Sin}[t])^{2}}} \cdot \frac{t \operatorname{Cos}[t]+\operatorname{Sin}[t]}{\sqrt{(t \operatorname{Cos}[t]+\operatorname{Sin}[t])^{2}+(\operatorname{Cos}[t]-t \operatorname{Sin}[t])^{2}}}, 0\right\}$
Simplify[x]
$\left\{\frac{\operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, \frac{t \operatorname{Cos}[t]+\operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\}$
The normal vector is then given by the derivative of this, scaled to length 1 :

$$
\begin{aligned}
& D\left[\left\{\frac{\operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, \frac{t \operatorname{Cos}[t]+\operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\}, t\right] \\
& \left\{\frac{-t \operatorname{Cos}[t]-2 \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}-\frac{t(\operatorname{Cos}[t]-t \operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}},-\frac{t(t \operatorname{Cos}[t]+\operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}}+\frac{2 \operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\} \\
& \operatorname{Len}\left[\mathrm{F}_{-}\right]:=\operatorname{Sqrt}\left[\mathrm{F}[[1]]^{\wedge} 2+\mathrm{F}[[2]]^{\wedge} 2+\mathrm{F}[[3]]^{\wedge} 2\right] \\
& \operatorname{Len}\left[\left\{\frac{-t \operatorname{Cos}[t]-2 \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}-\frac{t(\operatorname{Cos}[t]-t \operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}},-\frac{t(t \operatorname{Cos}[t]+\operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}}+\frac{2 \operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\}\right] \\
& \sqrt{\left(\frac{-t \operatorname{Cos}[t]-2 \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}-\frac{t(\operatorname{Cos}[t]-t \operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}}\right)^{2}+\left(-\frac{t(t \operatorname{Cos}[t]+\operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}}+\frac{2 \operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}\right)^{2}}
\end{aligned}
$$

## Example: spiral in 3D

$$
\sqrt{\left(\frac{-t \cos [t]-2 \sin [t]}{\sqrt{1+t^{2}}}-\frac{t(\cos [t]-t \sin [t])}{\left(1+t^{2}\right)^{3 / 2}}\right)^{2}+\left(-\frac{t(t \cos [t]+\sin [t])}{\left(1+t^{2}\right)^{3 / 2}}+\frac{2 \cos [t]-t \sin [t]}{\sqrt{1+t^{2}}}\right)^{2}}
$$

Simplify[ $\left.{ }^{[ }\right]$

$$
\sqrt{\frac{\left(2+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}}
$$

$$
\operatorname{HornYec}[t]=\left\{\frac{-t \operatorname{Cos}[t]-2 \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}-\frac{t(\operatorname{Cos}[t]-t \operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}},-\frac{t(t \cos [t]+\operatorname{Sin}[t])}{\left(1+t^{2}\right)^{3 / 2}}+\frac{2 \operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\} /
$$

$$
\begin{aligned}
& \sqrt{\frac{\left(2+\mathbf{t}^{2}\right)^{2}}{\left(1+\mathbf{t}^{2}\right)^{2}}} \\
&\left\{\frac{\frac{-t \cos [t]-2 \sin [t]}{\sqrt{1+t^{2}}}-\frac{t(\cos [t]-t \sin [t])}{\left(1+t^{2}\right)^{3 / 2}}}{\sqrt{\frac{\left(2+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}}} \cdot \frac{-\frac{t(t \cos [t]+\sin [t])}{\left(1+t^{2}\right)^{3 / 2}}+\frac{2 \cos [t]-t \sin [t]}{\sqrt{1+t^{2}}}}{\sqrt{\frac{\left(2+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}}}, 0\right\}
\end{aligned}
$$

Thus the normal vector reduces to

$$
\begin{aligned}
& \text { Simplify[x, hssumptions } \rightarrow\{t>0\}] \\
& \left\{-\frac{t \operatorname{Cos}[t]+\operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, \frac{\operatorname{Cos}[t]-t \operatorname{Sin}[t]}{\sqrt{1+t^{2}}}, 0\right\}
\end{aligned}
$$

## Example: spiral in 3D

Interpretation. Notice that the normal vector

$$
\left\{-\frac{\mathrm{t} \operatorname{Cos}[\mathrm{t}]+\operatorname{Sin}[\mathrm{t}]}{\sqrt{1+\mathrm{t}^{2}}}, \frac{\operatorname{Cos}[\mathrm{t}]-\mathrm{t} \operatorname{Sin}[\mathrm{t}]}{\sqrt{1+\mathrm{t}^{2}}}, 0\right\}
$$

has no vertical component. This is because the spiral lies completely in the $x-y$ plane, so an object moving on it is not accelerated vertically.

## Example: Helix

- Example: Helix
$\ln [5]:=\operatorname{Tang}[H e l i x[t]]$
Out $[5]=\left\{-\frac{4 \pi \operatorname{Sin}[4 \pi t]}{\sqrt{1+16 \pi^{2} \operatorname{Cos}[4 \pi t]^{2}+16 \pi^{2} \operatorname{Sin}[4 \pi t]^{2}}}\right.$.

$$
\left.\frac{4 \pi \operatorname{Cos}[4 \pi t]}{\sqrt{1+16 \pi^{2} \operatorname{Cos}[4 \pi t]^{2}+16 \pi^{2} \operatorname{Sin}[4 \pi t]^{2}}} \cdot \frac{1}{\sqrt{1+16 \pi^{2} \operatorname{Cos}[4 \pi t]^{2}+16 \pi^{2} \operatorname{Sin}[4 \pi t]^{2}}}\right\}
$$

$\ln [6]:=$ Simplify[X]
Out [b] $=\left\{-\frac{4 \pi \operatorname{Sin}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, \frac{4 \pi \operatorname{Cos}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, \frac{1}{\sqrt{1+16 \pi^{2}}}\right\}$
The normal vector is then given by the derivative of this, scaled to length 1

$$
\begin{aligned}
& \ln [\gamma]:=\mathrm{D}\left[\left\{-\frac{4 \pi \operatorname{Sin}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, \frac{4 \pi \operatorname{Cos}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, \frac{1}{\sqrt{1+16 \pi^{2}}}\right\}, t\right] \\
& \text { Out }[7]=\left\{-\frac{16 \pi^{2} \operatorname{Cos}[4 \pi t]}{\sqrt{1+16 \pi^{2}}},-\frac{16 \pi^{2} \operatorname{Sin}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, 0\right\} \\
& \ln [8]:=\operatorname{Len}\left[\mathbf{F}_{-}\right]:=\operatorname{Sqrt}\left[\mathbf{F}[[1]]^{\wedge} 2+\mathrm{F}[[2]]^{\wedge} 2+\mathrm{F}[[3]]^{\wedge} 2\right] \\
& \ln [9]:=\operatorname{Len}\left[\left\{-\frac{16 \pi^{2} \cos [4 \pi t]}{\sqrt{1+16 \pi^{2}}},-\frac{16 \pi^{2} \operatorname{Sin}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, 0\right\}\right] \\
& \text { Out }[8]=\sqrt{\frac{256 \pi^{4} \operatorname{Cos}[4 \pi t]^{2}}{1+16 \pi^{2}}+\frac{256 \pi^{4} \operatorname{Sin}[4 \pi t]^{2}}{1+16 \pi^{2}}}
\end{aligned}
$$

## Example: Helix

$\ln [8]:=\operatorname{Len}\left[\left\{-\frac{16 \pi^{2} \cos [4 \pi t]}{\sqrt{1+16 \pi^{2}}},-\frac{16 \pi^{2} \sin [4 \pi t]}{\sqrt{1+16 \pi^{2}}}, 0\right\}\right]$
Out $[9]=\sqrt{\frac{256 \pi^{4} \operatorname{Cos}[4 \pi t]^{2}}{1+16 \pi^{2}}+\frac{256 \pi^{4} \operatorname{Sin}[4 \pi t]^{2}}{1+16 \pi^{2}}}$
$\ln [10]:=$ Simplify $[\mathbf{X}]$
Out $[10]=\frac{16 \pi^{2}}{\sqrt{1+16 \pi^{2}}}$
Remarkably, it does not depend on time. This sort of simplification is often encountered when a curve is simple or has symmetries
$\ln [11]:=\operatorname{MormPec}[t]=\operatorname{Simplif} Y\left[\left\{-\frac{16 \pi^{2} \operatorname{Cos}[4 \pi t]}{\sqrt{1+16 \pi^{2}}},-\frac{16 \pi^{2} \operatorname{Sin}[4 \pi t]}{\sqrt{1+16 \pi^{2}}}, 0\right\} /\left(\frac{16 \pi^{2}}{\sqrt{1+16 \pi^{2}}}\right)\right]$
Out[11] $=\{-\operatorname{Cos}[4 \pi t],-\operatorname{Sin}[4 \pi t], 0\}$
Thus the normal vector to the 3D spiral traces out a circle in 2D

## Example: Helix

Interpretation. Notice that the normal vector again has no vertical component. If a particle rises in a standard helical path, it does not accelerate upwards of downwards. The acceleration points inwards in the $x-y$ plane. It points towards the central axis of the helix.

## Example: solenoid

$\operatorname{Solenoid}\left[t_{-}, r_{-}, R_{-}, V_{-}\right]:=\{(R+r \operatorname{Cos}[\nabla t]) \operatorname{Cos}[t],(R+r \operatorname{Cos}[\nabla t]) \operatorname{Sin}[t], R+r \operatorname{Sin}[\nabla t]\}$ ParametricPlot3D[Solenoid[t, 1, 2, 20], \{t, 0, 10\}, PlotPoints $\rightarrow$ 360]



## Example: solenoid

Scary, but it might be fun to work it out!

## Arc length

+ If an ant crawls at $1 \mathrm{~cm} / \mathrm{sec}$ along a curve, the time it takes from $a$ to $b$ is the arc length from a to $b$.

